• Title/Summary/Keyword: 헬름홀쯔 음향공

Search Result 8, Processing Time 0.024 seconds

Damping Characteristic of Resonator according to Geometry Variation (음향공 형상 변화에 따른 감쇠 특성 변화)

  • Kim, Jai-Ho;Park, Jin-Ho;Yu, I-Sang;Jang, Ji-Hun;Ko, Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.35-38
    • /
    • 2011
  • Damping characteristic according to acoustic cavity's geometries was investigated to control the high frequency combustion instability occurring in the Liquid Rocket Combustion Chamber by experimental test and linear analysis. Its diameter was determined as a design parameter and its orifice length and diameter were appointed as fixed parameter in this study. Result shows that the damping capacity has been almost constant through all the experiments despite using the same orifice and helmholtz resonators which have different volume.

  • PDF

Estimation of Sound Pressure from Vibration Signals on a Flat Plate and Experiment (진동 신호를 이용한 평판의 음압 분포 예측)

  • Kim, Kwan-Ju;Choi, Sung-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.340-345
    • /
    • 2000
  • 진동하는 구조물의 음향 방사 예측에는 키르히호프-헬름홀쯔 적분 방정식에 근본을 둔 경계 요소 해석이 널리 사용된다. 이 경계 요소 해석은 익히 알고 있듯이 구조물의 동적 거동이 정량적으로 표현될 수 있는 경우는 매우 높은 정확도의 예측 결과를 제공한다. 그러나 실제 현상에서 접할 수 있는 복잡한 구조물의 음향 방사 예측에는 많은 변수들로 인해 예측의 정확도가 감소됨은 확실하다. 다른 방법으로는 실험을 통한 임의의 음장 예측 방법인 근음장 음향 홀로그래피(nearfield acoustical holography) 방법을 들 수 있다. 이 방법은 실제로 발생되는 음향 방사로부터 마이크로폰을 이용하여 홀로그램면의 음압 또는 속도를 측정하고 키르히호프-헬름홀쯔 적분 방정식에 적용하여 임의의 홀로그램면에 투사(mapping)시켜 음장을 예측하는 방법이다. 근음장 음향 홀로그래피는 탁월한 정확성을 갖고 있으나, 측정의 복잡성과 홀로그램면을 형성하기 위한 많은 이산점(절점)의 필요성 등의 단점을 갖고 있다. 본 논문에서는 또 다른 음장 예측 방법인 실험의 장점과 유한 요소 해석의 장정을 복합시킨 모드 확장 방법(modal expansion method)을 사용하여 단순 구조물인 평판의 진동에 의한 음장을 예측해 보았다. 모드 확장 방법은 구조물의 동적 거동은 모드의 선형 조합으로 표현될 수 있다는 것에 그 원리를 둔다. 본 논문은 단순 평판을 대상으로 유한 요소 해석으로 구한 모드 정보와 실험에 의해 얻은 입의 가진 주파수에 대한 진동 표면의 속도 분포를 조합하여 속도 경계 조건을 구성, 경계 요소 해석으로 음장 예측을 수행하였으며 모드 확장 방법을 사용함에 있어 고려해야할 몇 가지 사항에 대해 다루었다.

  • PDF

Damping Characteristic of Helmholtz Resonator according to Its Geometry and Sound Pressure Level (헬름홀쯔 공명기의 기하학적 형상과 가진 음압에 따른 감쇠 특성)

  • Song, Jae-Kang;Kim, Ki-Woo;Chae, Byoung-Chan;Ko, Young-Sung;Kim, Sun-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.966-972
    • /
    • 2010
  • Damping characteristics of a Helmholtz resonator to passively control the combustion instability were investigated by linear acoustic analysis and atmospheric acoustic tests. Its orifice length and diameter were selected as the design parameters and supplied SPL(sound pressure level) effect on damping characteristics were investigated. Damping capacity is improved by decreasing the orifice length as well as by increasing the orifice diameter. Also, the results showed that the damping capacity of the resonator decreased nonlinearly about above 110 dB and instabilities in the nonlinear region were more effectively suppressed by increasing the orifice diameter.

Nonlinear Impedance Characteristics of Helmholtz Resonator with Tapered Neck (경사진 목을 가지는 헬름홀쯔 공명기의 비선형 임피던스 특성)

  • Seo, Sang-Hyeon;Chung, Hoe-min;Kim, Yang-hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.75-80
    • /
    • 2012
  • Helmholtz resonator is widely used acoustic instrument which has high absorption characteristics at its resonance frequency. Particularly it maintains good performance even in the low frequency region that is difficult to control by general porous absorptive materials. However, under severely high sound pressure level, the absorption characteristics are changed by increase of resistance due to nonlinear behavior of neck impedance. Because of this nonlinear behavior, it is difficult to obtain the expected absorption performance under high sound pressure environment. Thus, in order to prevent excessive rise of resistance, the resonator with neck having cross section dimension decrease away from the entry of the resonator cavity could be suggested. This paper introduces the experiment method and results about nonlinear characteristics of Helmholtz resonator with tapered neck and proposes the approximate nonlinear impedance model.

  • PDF

A Study on Quantification of Damping Efficiency of Acoustic Cavities by Absorption Coefficient (흡음 계수를 이용한 연소불안정 제어용 음향공의 감쇠 정량화)

  • Cha, Jung-Phil;Song, Jae-Gang;Hong-Jip Kim;Ko, Young-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.438-445
    • /
    • 2007
  • A Helmholtz resonator as a stabilization device to control high-frequency combustion instabilities in liquid rocket engine is adopted and its damping capacity is verified by linear acoustic analysis and atmospheric acoustic tests. To compare the results of acoustic attenuation effect in accordance with uni-resonator's geometry, quantitative analyses were made in the cases of various orifice diameters and lengths. Next, in the experiments to compare the results of acoustic attenuation effect by a difference in the number of resonators, damping capacity of harmful resonant frequency was improved by the increase of the number of resonators. On the other hand, attenuation efficiency of the frequency tended rather to lower due to over damping from the point of view of absorption coefficient. As the result, tuning the suitable geometry for the resonator to the resonant frequency is required for the control using the resonator. Also, the design of resonator's geometry and the choice of its number are important to put up the optimal efficiency in consideration of restriction of its volume.

Transmission Loss Characteristics of the Panel Type Silencer (패널형 소음기의 투과손실 특성 연구)

  • 서상현;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.178-183
    • /
    • 2003
  • This paper deals with transmission loss characteristics of the panel type silencer to control low frequency noise. The panel type silencer is composed of many Helmholtz resonators by side branch. Each resonator has high transmission loss on the narrow band of its resonance frequency. Direct arrangement of the resonators increases mainly the magnitude of transmission loss. If we arrange the resonators in a row, the peak and band of transmission loss are increased. This makes the resonator array to have high transmission loss in the broader band. Using this idea, we design a silencer that has broader band characteristics and smaller volume.

  • PDF

Characteristics of the silencer using resonator arrays with nonlinear impedance (비선형 임피던스를 고려한 공명기 배열 소음기의 특성)

  • Seo, Sang-Hyeon;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.374-379
    • /
    • 2013
  • Helmholtz resonators have high transmission loss in a narrow band at the resonance frequency. The transmission loss characteristics of resonators at high sound pressure levels can change due to variations of the impedance as a result of nonlinear behavior. Different sound pressure levels are applied to each resonator when resonators were arranged along the path. Therefore, impedance variation due to incident sound pressure level should be considered in order to predict the transmission loss.

  • PDF