Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.421-424
/
2022
Hough transform is a representative algorithm for detecting straight lines in an edge image. It corresponds the parameters of straight lines that may occur in the edge pixel into a parameter space, and detects valid parameters satisfying a given condition as straight lines. In general Hough transform, the parameters of the line are calculated with the image origin as the reference point. However, in this paper, the Hough transform based on the image center as a reference point is performed and its performance is compared and analyzed with the conventional Hough transform.
The generalized Hough transform(GHough) can be used effectively for detecting and extracting an arbitrary-shaped 2-D model in an input image. However, the main drawbacks of the GHough are both heavy computation and an excessive storage requirement. Thus, most of the researches so far have focused on reducing both the time and space requirement of the GHough. But it is still not clear how well their improved algorithms will perform under various noise in an input image. Thus, this paper proposes a new framework that can measure the performance of the GHough quantitatively. For this purpose, we view the GHough as a detector in signal detection theory and the ROC curve will be used to specify the performance of the GHough. Finally, we show that we can evaluate the GHough under various noise conditions in an input image.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2017.10a
/
pp.674-677
/
2017
The Hough transform is the most representative algorithm for a straight line detection based on edge pixels. It shows excellent performance in a simple linear image but requires a considerable amount of computation in a noisy or complex image and has a problem of detecting a pseudo straight line easily. In this paper, we propose a straight line detection algorithm to solve the problem of the conventional Hough transform. The proposed algorithm detects the straight line information of edge pixels by using principal component analysis (PCA) before performing Hough transform and performs the Hough transform of the limited slope area in the valid edge pixels based on the detected straight line information of edge pixels. Simulation results show that the proposed algorithm reduces the amount of computation as well as eliminates pseudo straight lines.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.12
/
pp.1868-1873
/
2021
This paper proposes the Hough transform(HT) using an extended lookup table(LUT) to reduce the computational burden of the HT that is a typical straight line detection algorithm, and analyzes its performance. The conventional HT also uses a LUT to the calculation of the parameter 𝜌 of all straight lines passing through an edge pixel of interest(ePel) in order to reduce the computational burden. However, the proposed HT adopts an extended LUT that can be applied to straight lines across the ePel as well as its peripheral edge pixels to induce more computational reduction. This paper proves the validity of the proposed algorithm mathematically and also verifies it through simulation. The simulation results show that the proposed HT reduces the multiplication computation from 49.6% up to 16.1%, depending on the image and the applied extended LUT, compared to the conventional HT.
본 논문에서는 모델에 기반한 2차원 영상인식 알고리즘 중에 하나인 일반화된 허프변환(Generalized Hough Transform)에 대하여 색상정보까지 포함할 수 있도록 기존의 알고리즘을 확장하는 방법을 제시하였고, 이에 의한 실험결과를 간단히 고찰하였다. 기존의 일반화된 허프변환은 대상물의 윤곽선 정보에 기반을 두었기 때문에, 윤곽선 정보가 일치하면 대상물의 색상이나 명암분포가 달라도 동일한 대상물로 인식할 가능성이 있다. 따라서, 일반화된 허프변환을 확장하여 대상물의 모델링과 인식과정에 색상정보(chromatic information)를 포함한다면 2D 영상인식시 컬러정보를 활용할 수 있는 장점이 있다. 여기에서는 실제로 모델링 과정과 인식과정에서 색상정보를 반영하기 위한 간략한 방법과, 이에 따른 실험결과를 제시하였다. 간단한 2D 위치변환이 존재하는 실험에서 윤곽선의 모양이 거의 일치하더라도 색상이 다른 대상물이 존재할 경우에 이를 올바로 구분할 수 있었다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2007.10a
/
pp.383-386
/
2007
허프 변환(Hough transform)은 영상에서 몇 개의 파라미터로 표현되는 기하학적 요소 추출을 위해 널리 사용되고 있는 방법 중 하나이다. 하지만 허프 변환은 영상의 한 픽셀이 허프 공간(Hough space)의 한 방정식에 대응되는 일대다 특성으로 인해 잡음에 민감한 특성을 갖는다. 이러한 잡음 민감성은 검출되는 직선의 개수뿐만이 아니라 검출된 직선의 품질에도 영향을 미칠 수 있다. 즉, 실제 직선에서 벗어난 직선이 검출되거나 하나의 실제 직선에 대해 여러 개의 직선이 검출되는 등의 직선 왜곡이 발생할 수 있다. 이러한 직선 왜곡은 잡음 이외에도 허프 공간의 설정, 특히 각 해상도의 설정에 영향을 받는다. 이 논문에서는 기존의 허프 변환에서 발생하는 이러한 직선 왜곡을 분석하고, 잡음 민감성을 줄이기 위해 제안된 경계선 강도 허프 변환(Edge Strength Hough Transform, ESHT)에서 이러한 왜곡이 적게 발생함을 보인다. 또한 ESHT에서만 발생할 수 있는 왜곡을 분석하고 해결방안을 제시한다. 제시한 방법에 의해 직선의 왜곡이 감소하는 것은 실험 결과를 통해 확인할 수 있다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.10
no.11
/
pp.2055-2061
/
2006
The detection of geometric primitives from a digital image is one of the basic tasks in computer vision area and the Hough transform is a well-known method for detecting analytical shape represented by a number of free parameters. However the basic property of the Hough transform, the one-to-many mapping from an image space to a Hough space, causes the innate problem, the sensitivity to noise. In this paper, we proposed Edge Strength Hough Transform which uses edge strength to reduce the sensitivity to noise and proved the insensitivity using the ratio of peaks in a Mough space. We also experimented the proposed method on lines and got small number of peaks in a Hough space compared to traditional Hough transform, which supports the noise insensitivity of the proposed method.
Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.9
/
pp.2203-2208
/
2014
The Hough transform (HT), that is a typical algorithm for detecting lines in images, needs considerable computational costs and easily detects pseudo-lines on the real world images, because of the large amount of features generated by their complex background or noise. This paper proposes an improved HT that add a preprocessing to estimate the validity of features to the conventional HT. The feature estimation can remove a lot of inessential features for the line detection using a pattern of $3{\times}3$ block features. Experiments using various images show that the proposed algorithm saves computational costs by removing 14%~58% of features depending on images and besides it is superior to the conventional HT in valid line detection.
Proceedings of the Korean Operations and Management Science Society Conference
/
1992.04b
/
pp.91-101
/
1992
본 연구에서는 용접선 추출의 방법으로 현재 많이 사용되고 있는 용접선을 따라 연속적으로 이미지를 얻어 처리하는 사전관찰(preview)기법을 개선하여 용접모재를 한번에 촬영(snapshot)하여 화상처리를 거친 후 용접정보가 들어 있는 CAD database와 비교, 매칭시켜 필요한 용접정보를 획득하는 새로운 방법을 제시한다. 또한 정확한 꼭지점을 추출하기 위해서는 정확한 직선식이 필요한데 이의 계산에는 허프변환(Hough Transform)이 이용되고 있지만 계산시간이 많이 소요되며 부정확하다. 계산시간의 감소 및 정확도의 향상을 위해 기존의 허프변환(Hough Transform)을 개선한 수정된 허프변환(Modified HoughTranform)을 개발하였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2007.06a
/
pp.728-731
/
2007
Though the Hough transform is a well-known method for detecting analytical shape represented by a number of free parameters, the basic property of the Hough transform, the one-to-many mapping from an image space to a Hough space, causes the innate problem, the sensitivity to noise. To remedy this problem, Edge Strength Hough Transform (ESHT) was proposed and proved to reduce the noise sensitivity. However the performance of ESHT depends on the size of a Hough space and image and some other parameters, which play an important role in ESHT and should be decided experimentally. In this paper, we derived a formula to decide decreasing parameter. Using the derived formulae, the decreasing parameter value can be decided only with the pre-determined values, the size of a Hough space and an image, which make it possible to decide them automatically.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.