Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2017.7.6.143

Performance Evaluation of the Generalized Hough Transform  

Chang, Ji-Young (Department of Computer Engineering, Gwangju University)
Publication Information
Journal of Convergence for Information Technology / v.7, no.6, 2017 , pp. 143-151 More about this Journal
Abstract
The generalized Hough transform(GHough) can be used effectively for detecting and extracting an arbitrary-shaped 2-D model in an input image. However, the main drawbacks of the GHough are both heavy computation and an excessive storage requirement. Thus, most of the researches so far have focused on reducing both the time and space requirement of the GHough. But it is still not clear how well their improved algorithms will perform under various noise in an input image. Thus, this paper proposes a new framework that can measure the performance of the GHough quantitatively. For this purpose, we view the GHough as a detector in signal detection theory and the ROC curve will be used to specify the performance of the GHough. Finally, we show that we can evaluate the GHough under various noise conditions in an input image.
Keywords
Hough Transform; Generalized Hough Transform; Shape Extraction; Object Recognition; Receiver Operating Characteristic;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 J. Illingworth & J. Kittler. (1988). A survey of the Hough transform. Computer Vision. Graphics and Image Processing, 44, 87-116. DOI : 10.1016/S0734-189X(88)80033-1   DOI
2 P. Mukhopadhyay & B. Chaudhuri. (2015) A survey of Hough Transform. Pattern Recognition, 48, 993-1010. DOI : 10.1016/j.patcog.2014.08.027   DOI
3 S. Chiu, C. Wen, J. Lee, K. Lin & H. Chen. (2012). A Fast Randomized Generalized Hough Transform for Arbitrary Shape Detection. International Journal of Innovative Computing, Information Control, 8(2), 1103-1116.
4 C. P. Chau & W. C. Siu. (2004). Adaptive Dual-Point Hough Transform for Object Recognition. Computer Vision and Image Understanding, 96(1), 1-16. DOI : 10.1016/j.cviu.2004.04.005.   DOI
5 P. Tipwai & S. Madarasmi. (2007). A modified generalized Hough transform for image search. IEICE TRANSACTIONS on Information and Systems, 90(1), 165-172. DOI : 10.1093/ietisy/e90-1.1.165
6 T. W. Anderson. (1984). An Introduction to Multivariate Statistical Analysis. USA : John Wiley & Sons.
7 M. J. Lee. (2014). A Study on Convergence Development Direction of Gesture Recognition Game. Journal of the Korea Convergence Society, 5(4), 1-7. DOI : 10.15207/JKCS.2014.5.4.001   DOI
8 H. L. V. Trees. (2002). Detection, Estimation, and Modulation Theory : Detection, Estimation, and Linear Modulation Theory. USA : John Wiley & Sons.
9 J. Y. Chang. (2014). A Selection of Threshold for the Generalized Hough Tranform : A Probabilistic Approach. Journal of Electronics and Information Engineers of Korea, 51(1), 161-171. DOI : 10.5573/ieie.2014.51.1.161   DOI
10 S. M. Ross. (2014). Introduction to probability models. USA : Academic press. DOI : 10.1016/B978-0-12-407948-9.00012-8
11 Y. K. Kim, J. G. Lim & M. H. Kim. (2016). Lip Reading Method Using CNN for Utterance Period Detection. Journal of digital Convergence, 14(8), 233-243. DOI : 10.14400/JDC.2016.14.8.233   DOI
12 B. SODGEREL, Y. K. Kim & M. H. Kim. (2015). 8-Straight Line Directions Recognition Algorithm for Hand Gestures Using Coordinate Information. Journal of digital Convergence, 13(9), 259-267. DOI : 10.14400/JDC.2015.13.9.259   DOI
13 H. J. Moon, M. H. Lee & K. H. Jeong. (2015). Authentication Performance Optimization for Smart-phone based Multimodal Biometrics. Journal of digital Convergence, 13(6), 151-156. DOI : 10.14400/JDC.2015.13.6.151   DOI
14 S. K. Kang & S. H. Chun. (2016). Real-Time Object Tracking Algorithm based on Pattern Classification in Surveillance Networks. Journal of digital Convergence, 14(2), 183-190. DOI : 10.14400/JDC.2016.14.2.183   DOI
15 H. P. VC. (1962). US 3069654. Washington, DC : U.S. Patent and Trademark Office.
16 D. H. Ballard. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition, 13(2), 111-122. DOI : 10.1016/0031-3203(81)90009-1   DOI