• Title/Summary/Keyword: 허용변위

Search Result 197, Processing Time 0.02 seconds

A Slim PZT Actuator for Small form Factor Optical Disk Drives (초소형 광디스크 드라이브용 압전형 액츄에이터 제작)

  • Woosung Yang;Lee, Seung-Yop;Park, Young-Phil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.762-769
    • /
    • 2003
  • 본 연구에서는 적층형 압전소자를 이용하여 초소형 및 슬림형 광디스크 드라이브용 광픽업 구동기를 개발하였다. 최근에 휴대용 정보기기의 급격한 발달로 인해 다양한 형태의 초소형 정보저장기기가 사용되고 있으며 착탈식 형태의 초소형 광디스크를 사용하는 ODD가 개발 중에 있다. 적층 형태의 압전소자와 유연 힌지 형태의 변위 확대기구를 사용하여 구동기의 출력 힘과 허용 변위를 증가시키도록 설계하였다. 압전형 구동기의 동특성을 고려한 모델링과 이론적 해석을 통해 목표 변위와 성능을 만족하도록 설계 변수를 최적화하였고 이를 ANSYS를 이용한 해석과 비교하였다. 상용화된 적층형 압전소자를 이용한 prototype 올 제작하여 실험을 수행하였으며 이론적인 예상 값과 잘 일치함을 보였다. 이와 같은 이론적 해석과 실험 결과를 토대로 높이가 2.5mm이며 15V 에서 $\pm$400$\mu\textrm{m}$의 변위를 갖는 슬림형 및 초소형 ODD에 적합한 압전형 구동기를 설계하였다.

  • PDF

Damage Detection in Steel Box Girder Bridge using Static Responses (강박스 거더교에서 정적 거동에 의한 손상 탐지)

  • Son, Byung Jik;Huh, Yong-Hak;Park, Philip;Kim, dong Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.693-700
    • /
    • 2006
  • To detect and evaluate the damage present in bridge, static identification method is known to be simple and effective, compared to dynamic method. In this study, the damage detection method in steel box girder bridge using static responses including displacement, slope and curvature is examined. The static displacement is calculated using finite element analysis and the slope and curvature are determined from the displacement using central difference method. The location of damage is detected using the absolute differences of these responses in intact and damaged bridge. Steel box girder bridge with corner crack is modeled using singular element in finite element method. The results show that these responses were significantly useful in detecting and predicting the location of damage present in bridge.

Effects of Pile Diameter on the Lateral Behavior of Offshore Pile in the Southwestern Area of Korea (서남해안 해상풍력단지 말뚝의 직경에 따른 횡방향 거동)

  • Lee, In;Choi, Younggyun;Kim, Honglak;Kwon, Osoon;Youn, Heejung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.5
    • /
    • pp.23-32
    • /
    • 2013
  • This paper presents the effect of pile diameter on the lateral behavior of offshore pile for wind turbine. The material parameters of the soils were estimated through SPT on the Southwestern offshore area in Korea, where the first wind farm is planned. The FDM software, FLAC3D, and LPile were adopted to derive the load-displacement curve, p-y curve, and maximum bending moment at a specified displacement. It was found that the results from softwares significantly differ and the LPile could overestimate the allowable capacity. The maximum bending moment along the pile with 2m diameter could be as large as four times the bending moment with 1m diameter. Similar trend was observed for the allowable lateral capacity.

Evaluation of Horizontal Load and Moment Capacities of Bucket-Type Offshore Wind Turbine Foundation (버켓형식 해상풍력기초의 수평 하중과 모멘트 저항력 평가)

  • Bagheri, Pouyan;Yoon, Jong Chan;Son, Su Won;Kim, Jin Man
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.1
    • /
    • pp.5-12
    • /
    • 2021
  • Owing to economically efficient and easy installation, bucket foundation is a promising solution for offshore wind turbines. This paper aims at finding the behavior of suction caissons and soil surrounding the foundation by using three-dimensional finite element analysis. Under various loading conditions, a wide range of foundation geometries installed in dense and medium dense sandy soil was considered to evaluate ultimate horizontal load and overturning moment capacity. The results show that the rotation and displacement of the bucket due to monotonic loading are largely dependent on the foundation geometry, soil density and load eccentricity. Normalized diagrams and equations for the ultimate horizontal load and overturning moment capacities are presented that are useful tool for the preliminary design of such foundation type.

Behavior Analysis of Soil Nailed Wall through Large Scaled Load Test (대형파괴재하시험을 통한 쏘일네일 벽체의 거동분석)

  • Kang, Inkyu;Kwon, Youngho;Park, Shinyoung;Lee, Seunghyun;Kim, Hongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.3
    • /
    • pp.51-60
    • /
    • 2008
  • Soil nailing systems are generally many used to the temporary structure in underground excavations and reinforcements of slopes in Korea. However, large-scaled experimental studies related to soil nailing systems are mostly studies related to performance monitoring and field pullout tests. Specially, there are no researches related in the large scaled load tests of soil nailed walls in Korea. In this study, a case study on the large scaled load tests of soil nailed walls is introduced and the behavior characteristic of them is investigated. Also, they are proposed allowable deformation corresponding to the serviceability limit of soil nailed walls and ultimate deformation corresponding to the collapse state of the walls. These results can be applied to the maintenance management of soil nailed walls. And analysis on the required minimum factor of safety of soil nailed walls using the relation curve of load ratio and deformation ratio are carried out.

  • PDF

A Study on the Excavation of the Center Wall for the Evacuation Passageway in the Operating 2-Arch Tunnel (운행 중인 2-Arch 터널의 피난연결통로 신설을 위한 중앙벽체 굴착에 관한 연구)

  • Lee, Jong-Hyun
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.454-464
    • /
    • 2021
  • Purpose: There is a need to construct an evacuation passageway for the 2-Arch tunnel, which has been constructed and is in operation. Therefore, it aims to analyze tunnel and center wall behaviour and stability due to excavation of the center wall. Method: We describe the theoretical background of 2-Arch tunnel and evacuation passageway, and focused on analyzing the behaviour of tunnel and wall using 3-dimensional finite element analysis. Parametric analysis according to rock rating was performed with various ground conditions, and the displacement and stress of the center wall were intensively analyzed. Result: With the center wall excavation, the largest amount of settlement was shown in the center of the opening, and the stress was greatest during the first excavation. In addition, it was shown that stress concentration occurred at the top of both openings, and stability reviews considering the concept of allowable stress showed that it exceeded the allowable stress. Conclusion: Although the displacement of the tunnel has secured stability within the allowable standard, the generated stress is found to exceed the allowable standard, so it is necessary to prevent sudden stress release by applying appropriate reinforcement methods during construction.

Numerical Analysis of Laterally Displacing Abutment in High Landfill Slope (고성토사면에 시공된 교대의 측방유동에 대한 수치해석적 연구)

  • Park, Min-Cheol;Jang, Seo-Yong;Shin, Baek-Chul;Han, Heui-Soo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.27-39
    • /
    • 2012
  • This research is to propose the reinforcing method and design code for the lateral behaviors of the abutment displacement induced from the rainfall infiltration on high landfill slope. First, to make the proper numerical analysis, in-situ soil (weathered granite soil) was taken, and the variance of strength parameters according to water content variance was examined by undrained direct shear test, furthermore, other soil parameters were calculated from the standard penetration test such as elastic modulus and Poisson's ratio etc,. Those parameters were used to calculate the lateral behavior of abutment by finite element method and the member force of pile in high landfill slope according to rainfall infiltration . From the results, the shoe displacement on abutment was calculated as 8.98cm, which is 3 times bigger than the allowable displacement, 3cm. To reinforce it, several reinforcing methods were selected and analyzed such as reinforced retaining wall, soil surcharge, pile reinforcing (5m enlargement, 3-line arrangement, 5m enlargement and 3-line arrangement). In case of 5m enlarged and 3-line arrangement piles, the lateral behavior of shoe showed lower value(2.26 cm) than allowable displacement.

Shaking Table Test of a 1/10 Scale Isolated Fifteen-story Flat Plate Apartment Building (면진층을 가지는 1/10 축소된 15층 무량판 아파트건물의 진동대 실험)

  • Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.2 no.3
    • /
    • pp.287-297
    • /
    • 2011
  • This paper presents the results of performance verification tests of the isolated flat plate apartment building with the laminated rubber bearings. The shaking table test is carried out in CABR(China Academy of Building Research) with two 1/10 scale isolation and non-isolation models under 4 excitation waves. The shaking table test is proceeding from x axis, y axis and x+y axis with different amplitude of acceleration values. The results show that, to non-isolated model, the natural vibration period is remarkably decreased and entered non-linear condition after moderate earthquake. Its accelerations become lager with increasing storey number and completely collapsed under large earthquake. The inter-storey shifts largely exceed the limit values of regulated displacement angles. But to isolated model, the natural vibration period of isolated modal is almost the same in all conditions and still in its elastic condition. The earthquake loading is greatly reduced and the accelerations of superstructure are greatly reduced. The inter-storey drifts are very small and can be neglected. The isolated model is in translational state and can be seen as a rigid whole. The displacements of isolation layer are in the allowable range. This experiment demonstrates that the seismic isolation is very effective to mitigate the influence of earthquake on structures and it is possible to increase the serviceability due to decrease the floor acceleration. facilities from their good states that is superior to non-isolated structure.

Shaking Table Test for Seismic Performance Evaluation of Non-Seismic Designed Wall-Type Apartment (내진설계 되지 않은 공동주택의 진동대 실험에 의한 내진성능 평가)

  • Chung, Lan;Lee, Joung-Woo;Park, Tae-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.721-728
    • /
    • 2006
  • Earthquakes are reported thai building structures have been colossal damaged, but before 1988 designed structures which were not applicate seismic design code have no seismic performance. Especially, for the apartment structures were indicated that it have no resist wall element of earthquake before 1988 designed structures. We have to evaluate for seismic performance this structures, therefore it will be retrofitted for seismic index sufficient structures. We performed seismic performance evaluation for model structures by MIDAS which is general structure analysis software. In this study, it was performed shaking table test to evaluate model structure which is reinforcement concrete and 5 floors for seismic performance index. We made specimens by similar's law and tested shaking table test. In the shaking table test it is not performed prototype model test because of space and equipment condition. So we had made scale-down model for 1/5 by similar's law. That's why it needs for the evaluation of performance. However, it is not possible to do an experiment of prototype owing to the shortage of space and the limit of an experimental instrument in the shaking table test. Then, modeling and reducing the part of prototype do the experiment. In this experiment a shaking table test is done and seismic performance of model structures is evaluated by using similitude laws for scale down specimen. As a result it is proved that non-seismic design structures need to retrofit since seismic performance shows life safe grade in 0.12g of an earthquake.

Reliability of Earth Retaining Structure during Earthquake (지진을 고려한 토류구조물의 신뢰도 해석)

  • 백영식;심태섭
    • Geotechnical Engineering
    • /
    • v.5 no.3
    • /
    • pp.39-50
    • /
    • 1989
  • A method is investigated to analyze the reliability of the gravity retaining wall which is designed to allow a limiting translational movement induces by the earthquake loading. Application of FOSM method to the Richards and Elms model yields a practical procedure for the analyses of the reliability and sensitivity of the retaining wall sujected to the earthquake. After examination of the practice (or the earthquake design of the retaining wall, the methods of the reliability analysis are considered. Finally, this study presents the step-by.step procedure for analyzing the reliability of the earth retaining structure for pratical convinience.

  • PDF