• Title/Summary/Keyword: 행동 패턴 학습

Search Result 119, Processing Time 0.02 seconds

Home Automation System through Learning User Life Pattern (사용자 생활패턴 학습을 통한 홈오토메이션 시스템)

  • Bae, Hong-Min;Seo, Shin-Il;Kim, Byung-Seo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.2
    • /
    • pp.79-85
    • /
    • 2015
  • Home automation technology combines various devices in home organically with each other to ensure the convenience and improved safety of the home life refers to a technique for improving the human living. Because of the technology needed to make this house before you can act as awareness of your thoughts. In this paper, we implement the system model, such as data collection using a sensor network, and take advantage of the idea that the data itself to the home, and an introduction to the method.

Advancing Societal Statistics Processing Methodology through Artificial Intelligence: A Case Study on Household Trend Survey and Time Use Survey (인공지능 기반 사회 통계 생산 방법론 고도화 방안: 가계동향조사와 생활시간조사 사례)

  • Kyo-Joong Oh;Ho-Jin Choi;Ilgu Kim;Seungwoo Han;Kunsoo Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.563-567
    • /
    • 2023
  • 본 연구는 한국 통계청이 수행하는 가계동향조사와 생활시간조사에서 자료처리 과정 및 방법을 혁신하려는 시도로, 기존의 통계 생산 방법론의 한계를 극복하고, 대규모 데이터의 효과적인 관리와 분석을 가능하게 하는 인공지능 기반의 통계 생산을 목표로 한다. 본 연구는 데이터 과학과 통계학의 교차점에서 진행되며, 인공지능 기술, 특히 자연어 처리와 딥러닝을 활용하여 비정형 텍스트 분류 방법의 성능을 검증하며, 인공지능 기반 통계분류 방법론의 확장성과 추가적인 조사 확대 적용의 가능성을 탐구한다. 이 연구의 결과는 통계 데이터의 품질 향상과 신뢰성 증가에 기여하며, 국민의 생활 패턴과 행동에 대한 더 깊고 정확한 이해를 제공한다.

  • PDF

A Study on Game Bot Detection Using Self-Similarity in MMORPGs (자기 유사도를 이용한 MMORPG 게임봇 탐지 시스템)

  • Lee, Eun-Jo;Jo, Won-Jun;Kim, Hyunchul;Um, Hyemin;Lee, Jina;Kwon, Hyuk-min;Kim, Huy-Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.1
    • /
    • pp.93-107
    • /
    • 2016
  • Game bot playing is one of the main risks in Massively Multi-Online Role Playing Games(MMORPG) because it damages overall game playing environment, especially the balance of the in-game economy. There have been many studies to detect game bot. However, the previous detection models require continuous maintenance efforts to train and learn the game bots' patterns whenever the game contents change. In this work, we have proposed a machine learning technique using the self-similarity property that is an intrinsic attribute in game bots and automated maintenance system. We have tested our method and implemented a system to major three commercial games in South Korea. As a result, our proposed system can detect and classify game bots with high accuracy.

A Smart DTMC-based Handover Scheme Using Vehicle's Mobility Behavior Profile (차량의 이동성 행동 프로파일을 이용한 DTMC 기반의 스마트 핸드오버 기법)

  • Han, Sang-Hyuck;Kim, Hyun-Woo;Choi, Yong-Hoon;Park, Su-Won;Rhee, Seung-Hyuong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6B
    • /
    • pp.697-709
    • /
    • 2011
  • For improvement of wireless Internet service quality at vehicle's moving speed, it is advised to reduce the service disruption time by reducing the handover frequency on vehicle's moving path. Particularly, it is advantageous to avoid the handover to cell whose dwell time is short or can be ignored in terms of service continuity and average throughput. This paper proposes the handover scheme that is suitable for vehicle in order to improve the wireless Internet service quality. In the proposed scheme, the handover process continues to be learned before being modeled to Discrete-Time Markov Chain (DTMC). This modeling reduces the handover frequency by preventing the handover to cell that could provide service sufficiently to passenger even when vehicle passed through the cell but there was no need to perform handover. In order to verify the proposed scheme, we observed the average number of handovers, the average RSSI and the average throughput on various moving paths that vehicle moved in the given urban environment. The experiment results confirmed that the proposed scheme was able to provide the improved wireless Internet service to vehicle that moved to some degree of consistency.

Collision Avoidance Path Control of Multi-AGV Using Multi-Agent Reinforcement Learning (다중 에이전트 강화학습을 이용한 다중 AGV의 충돌 회피 경로 제어)

  • Choi, Ho-Bin;Kim, Ju-Bong;Han, Youn-Hee;Oh, Se-Won;Kim, Kwi-Hoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.9
    • /
    • pp.281-288
    • /
    • 2022
  • AGVs are often used in industrial applications to transport heavy materials around a large industrial building, such as factories or warehouses. In particular, in fulfillment centers their usefulness is maximized for automation. To increase productivity in warehouses such as fulfillment centers, sophisticated path planning of AGVs is required. We propose a scheme that can be applied to QMIX, a popular cooperative MARL algorithm. The performance was measured with three metrics in several fulfillment center layouts, and the results are presented through comparison with the performance of the existing QMIX. Additionally, we visualize the transport paths of trained AGVs for a visible analysis of the behavior patterns of the AGVs as heat maps.

Research on Core Technology for Information Security Based on Artificial Intelligence (인공지능 기반 정보보호핵심원천기술 연구)

  • Sang-Jun Lee;MIN KYUNG IL;Nam Sang Do;LIM JOON SUNG;Keunhee Han;Hyun Wook Han
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.99-108
    • /
    • 2021
  • Recently, unexpected and more advanced cyber medical treat attacks are on the rise. However, in responding to various patterns of cyber medical threat attack, rule-based security methodologies such as physical blocking and replacement of medical devices have the limitations such as lack of the man-power and high cost. As a way to solve the problems, the medical community is also paying attention to artificial intelligence technology that enables security threat detection and prediction by self-learning the past abnormal behaviors. In this study, there has collecting and learning the medical information data from integrated Medical-Information-Systems of the medical center and introduce the research methodology which is to develop the AI-based Net-Working Behavior Adaptive Information data. By doing this study, we will introduce all technological matters of rule-based security programs and discuss strategies to activate artificial intelligence technology in the medical information business with the various restrictions.

Exploring the contextual factors of episodic memory: dissociating distinct social, behavioral, and intentional episodic encoding from spatio-temporal contexts based on medial temporal lobe-cortical networks (일화기억을 구성하는 맥락 요소에 대한 탐구: 시공간적 맥락과 구분되는 사회적, 행동적, 의도적 맥락의 내측두엽-대뇌피질 네트워크 특징을 중심으로)

  • Park, Jonghyun;Nah, Yoonjin;Yu, Sumin;Lee, Seung-Koo;Han, Sanghoon
    • Korean Journal of Cognitive Science
    • /
    • v.33 no.2
    • /
    • pp.109-133
    • /
    • 2022
  • Episodic memory consists of a core event and the associated contexts. Although the role of the hippocampus and its neighboring regions in contextual representations during encoding has become increasingly evident, it remains unclear how these regions handle various context-specific information other than spatio-temporal contexts. Using high-resolution functional MRI, we explored the patterns of the medial temporal lobe (MTL) and cortical regions' involvement during the encoding of various types of contextual information (i.e., journalism principle 5W1H): "Who did it?," "Why did it happen?," "What happened?," "When did it happen?," "Where did it happen?," and "How did it happen?" Participants answered six different contextual questions while looking at simple experimental events consisting of two faces with one object on the screen. The MTL was divided to sub-regions by hierarchical clustering from resting-state data. General linear model analyses revealed a stronger activation of MTL sub-regions, the prefrontal lobe (PFC), and the inferior parietal lobule (IPL) during social (Who), behavioral (How), and intentional (Why) contextual processing when compared with spatio-temporal (Where/When) contextual processing. To further investigate the functional networks involved in contextual encoding dissociation, a multivariate pattern analysis was conducted with features selected as the task-based connectivity links between the hippocampal subfields and PFC/IPL. Each social, behavioral, and intentional contextual processing was individually and successfully classified from spatio-temporal contextual processing, respectively. Thus, specific contexts in episodic memory, namely social, behavior, and intention, involve distinct functional connectivity patterns that are distinct from those for spatio-temporal contextual memory.

Development of Attack Intention Extractor for Soccer Robot system (축구 로봇의 공격 의도 추출기 설계)

  • 박해리;정진우;변증남
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.4
    • /
    • pp.193-205
    • /
    • 2003
  • There has been so many research activities about robot soccer system in the many research fields, for example, intelligent control, communication, computer technology, sensor technology, image processing, mechatronics. Especially researchers research strategy for attacking in the field of strategy, and develop intelligent strategy. Then, soccer robots cannot defense completely and efficiently by using simple defense strategy. Therefore, intention extraction of attacker is needed for efficient defense. In this thesis, intention extractor of soccer robots is designed and developed based on FMMNN(Fuzzy Min-Max Neural networks ). First, intention for soccer robot system is defined, and intention extraction for soccer robot system is explained.. Next, FMMNN based intention extractor for soccer robot system is determined. FMMNN is one of the pattern classification method and have several advantages: on-line adaptation, short training time, soft decision. Therefore, FMMNN is suitable for soccer robot system having dynamic environment. Observer extracts attack intention of opponents by using this intention exactor, and this intention extractor is also used for analyzing strategy of opponent team. The capability of developed intention extractor is verified by simulation of 3 vs. 3 robot succor simulator. It was confirmed that the rates of intention extraction each experiment increase.

EFFECT OF THE SOCIAL SKILL TRAINING IN ADHD CHILDREN (주의력 결핍 과잉운동장애 아동에서 사회기술훈련의 효과)

  • Park, Soon-Young;Kwack, Young-Sook;Kim, Mi-Koung
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.9 no.2
    • /
    • pp.154-164
    • /
    • 1998
  • Medication is widely accepted as an effective method to reduce the problem of attention deficit, hyperactivity, impulsivity, resistance and violence of ADHD children. However, it does not provide us with the solution on the conflicting routinized behavioral patterns to gain a high level of self-control and acceptable behavior. As a way of replacing medication, this study applies the social skills training program for ADHD children and measures the level of improvement of social skills and the change of the behavioral patterns. The experiment is carried out on 16 children ranged from 6 to 13 years of age for 10 weeks. The patients are divided into three groups:a pure ADHD group, an ADHD group with conduct disorder, an ADHD group with mental retardation and other symptoms. The change of symptoms and the change of social skills are measured by the Child Behavior Checklist(CBCL), the ADD-H Comprehensive Teacher’s Rating Scale(ACTeRS) and the Social Skills Rating Scale(SSRS), and finally Mastson Evaluation of Social Skills for Youth(MESSY). Wilcoxon signed ranks test is used to evaluate the effect of the treatment, and Kruskal-Wallis test is also used to measure the change after the treatment in each of the three groups. In the ADHD group with conduct disorder, the examination of the effect of the treatment shows a significant reduction of violence in the area of behavior(p<.05), and a significant difference of activity and social skills in the area of social competent(p<.001). In the ADHD group with mental retardation and other symptoms, a significant rise of social skills is found in the area of social skills evaluation (p<.05). However, there is no significant difference of effect by the treatment among the three groups. In addition, the current examination shows that the social skills training program does not make a statistically significant contribution to the social skills of the ADHD children. On the other hand, the training helps some children, when it is suitable for the characteristics and accompanying symptoms of the children:it reduces the level of violence in the ADHD group with conduct disorder, and it raises the social skills in the ADHD group with mental retardation. In other words, the social skills training program will reduce the conduct disorder and helps peer relation for ADHD children.

  • PDF

Feature Selecting Algorithm Development Based on Physiological Signals for Negative Emotion Recognition (부정감성 인식을 위한 생체신호 기반의 특징 선택 알고리즘 개발)

  • Lee, JeeEun;Yoo, Sun K.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3925-3932
    • /
    • 2013
  • Emotion is closely related to the life of human, so has effect on many parts such as concentration, learning ability, etc. and makes to have different behavior patterns. The purpose of this paper is to extract important features based on physiological signals to recognize negative emotion. In this paper, after acquisition of electrocardiography(ECG), electroencephalography(EEG), skin temperature(SKT) and galvanic skin response(GSR) measurements based on physiological signals, we designed an accurate and fast algorithm using combination of linear discriminant analysis(LDA) and genetic algorithm(GA), then we selected important features. As a result, the accuracy of the algorithm is up to 96.4% and selected features are Mean, root mean square successive difference(RMSSD), NN intervals differing more than 50ms(NN50) of heart rate variability(HRV), ${\sigma}$ and ${\alpha}$ frequency power of EEG from frontal region, ${\alpha}$, ${\beta}$, and ${\gamma}$ frequency power of EEG from central region, and mean and standard deviation of SKT. Therefore, the features play an important role to recognize negative emotion.