• Title/Summary/Keyword: 해양 IoT

Search Result 74, Processing Time 0.028 seconds

IMO MASS Code 개발 현황과 대한민국의 표준화 대응 방안

  • 안창수;장상진;서성미;정승만
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.219-220
    • /
    • 2023
  • 인공지능(AI), 사물인터넷(IoT) 등 관련 기술의 발전으로 자율운항선박 상용화가 임박하게 되었다. 국제해사기구(IMO)는 새로운 기술도입을 촉진하는 한편, 신기술 도입에 따른 위험을 최소화하기 위하여 자율운항선박 협약(MASS Code)을 개발하고 있다. 대한민국 또한 '자율운항선박 기술개발 사업(KASS)' 추진을 통하여 기술개발과 핵심기술의 국제표준화를 추진하고 있다. 이 연구에서는 현재까지 협약 개발의 국제적 현황을 분석 후 대한민국 핵심기술을 국제적으로 표준화하기 위한 대응방안에 대해 제시하였다.

  • PDF

A Study on the Development of ESG Indicators for Sustainable Smart Ports (지속가능한 스마트 항만을 위한 ESG 지표 개발에 관한 연구)

  • Jae-Hoon Lee;Myung-Hee Chang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.296-297
    • /
    • 2022
  • A smart port refers to a port built based on digital technologies such as IoT, big data, AI, and block chain, and refers to a port that minimizes waste of time, space and resources as the only means of survival of the port. Sustainability refers to 'environmental, economic, and social characteristics that enable people to continue to use the environment, ecosystem, or publicly used resources'. It contains the meaning of 'future sustainability' that can be maintained in the future. In the face of the 4th industrial revolution, interest and realization of smart port construction and sustainability are actively progressing around the world. In this study, core indicators of the ESG (Enviornment, Social, Governance) area, which are key elements of sustainable smart ports, were developed,

  • PDF

Verification of Communication Distance and Position Error of Electric Buoy for Automatic Identification of Fishing Gear (어구 자동 식별을 위한 전자 부이의 통신 거리 및 위치 오차 검증)

  • Kim, Sung-Yul;Yim, Choon-Sik;Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.5
    • /
    • pp.397-402
    • /
    • 2021
  • The real-name electric fishing gear system is one of the important policy capable to build 'abundant fishing ground' and to protect marine environment. And, fishing gear automatic-identification system is one of IoT services that can implement above-mentioned policy by using communication such as low power wide area (LPWA) and multi-sensing techniques. Fishing gear automatic -identification system can gather the location data and lost/hold data from electric buoy floated in sea and can provide them to fishermen and monitoring center in land. We have developed the communication modules and electric buoy consisted of fishing gear automatic-identification system. In this paper, we report the test results of communication distance between electric buoy and wireless node installed in fish boat and location error of electric buoy. It is confirmed that line of sight (LOS) distance between electric buoy and wireless node is obtained to be 62 km, which is two times of the desired value, and location error is obtained to be CEP 1 m, which is smaller than the desired value of CEP 5 m. Therefore, it is expected that service area and accuracy of the developed fishing gear automatic-identification system is more extended.

Considerations for On-the-spot Application of Ocean Sensor Network Technologies (해양센서네트워크 기술의 현장 적용을 위한 고려사항)

  • Shin, DongHyun;Kim, Changhwa
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.351-354
    • /
    • 2015
  • 지구 전체 표면적의 약 70%인 바다는 석유를 포함한 각종 수산자원이 풍부하지만 인간은 바다로 접근하기 위해 파도, 태풍 등의 날씨에 절대적인 영향을 받기 때문에 쉽게 접근하기 어렵다. 이 경우 해양 관련 정보를 얻고 분석 및 활용하기 위해 IoT (Internet of Things)의 기반 기술인 센서네트워크를 사용할 수 있다. 하지만 바다에 센서네트워크를 적용하기 위해서는 파도, 태풍을 포함한 염분 등을 충분히 고려해야 한다. 게다가 수중 통신을 사용할 경우 수중에서는 전파를 사용할 수 없기 때문에 음파와 같이 수중에서 통신이 가능한 방법을 선택해야 한다. 따라서 본 논문에서는 해양센서네트워크 기술의 현장 적용을 위한 고려사항에 대해 논의하고, 실제 가두리 양식장에 설치 운용한 사례를 소개한다.

A Study on the Implementation of a IoT Sensor-based Smart Compression System (센서 기반의 스마트 압축 시스템 구현에 대한 연구)

  • Oh, Eun-Young;Yoon, Keun-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1287-1294
    • /
    • 2021
  • This paper is a study on the implementation of a sensor-based smart compression system for improving home and street environments. Since modernization, the amount of garbage has been increasing every year, and this has seriously adversely affected not only people but also ecosystems such as marine pollution and soil pollution. In particular, in large cities with large floating populations, garbage is dumped on the streets without proper measures to deal with the amount of waste generated. In order to improve this problem, this paper intends to implement a system with automatic compression and opening/closing functions using sensors. This system is designed to activate automatic opening/closing function through an infrared sensor, and automatically opening and closing when the inclination is changed using an impact sensor. In addition, by installing a distance sensor, the amount of internal waste can be easily monitored from the outside, and a manual compression switch and a manual opening/closing switch is separately designed to enable opening and closing and compression as needed to increase the effectiveness.

A Study on Design Method of Smart Device for Industrial Disaster Detection and Index Derivation for Performance Evaluation (산업재해 감지 스마트 디바이스 설계 방안 및 성능평가를 위한 지표 도출에 관한 연구)

  • Ran Hee Lee;Ki Tae Bae;Joon Hoi Choi
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.120-128
    • /
    • 2023
  • There are various ICT technologies continuously being developed to reduce damage by industrial accidents. And research is being conducted to minimize damage in case of industrial accidents by utilizing sensors, IoT, big data, machine learning and artificial intelligence. In this paper, we propose a design method for a smart device capable of multilateral communication between devices and smart repeater in the communication shaded Areas such as closed areas of industrial sites, mountains, oceans, and coal mines. The proposed device collects worker's information such as worker location and movement speed, and environmental information such as terrain, wind direction, temperature, and humidity, and secures a safe distance between workers to warn in case of a dangerous situation and is designed to be attached to a helmet. For this, we proposed functional requirements for smart devices and design methods for implementing each requirement using sensors and modules in smart device. And we derived evaluation items for performance evaluation of the smart device and proposed an evaluation environment for performance evaluation in mountainous area.

Experimental Study of the Wireless Communication System by Surface Wave Communication through Confined Spaces on Vessels (선박 밀폐 공간 무선통신 구현을 위한 표면파 통신의 선박 활용연구)

  • Kong, Jin-Woo;Song, Suk-Gun;Kim, Hak-Sun;Kim, Bu-Young;Shim, Woo-Seong
    • Journal of Navigation and Port Research
    • /
    • v.45 no.6
    • /
    • pp.366-371
    • /
    • 2021
  • This study suggests surface wave communication, which uses a metal surface as a medium, to provide wireless communication in the extreme environment due to surrounding metal materials on vessels. The test was conducted on a G/T 265 tons tug boat to confirm the possibility of surface wave communication between a bridge and each designated space in the ship. As a result, the transmission speed was 13Mbps on average. In a test case of the bridge via the engine room, the transmission speed was 4.3Mbps on engine running and 1.2Mbps on sailing. It overcame this by partially changing the equipment installation location. Surface wave communication in bow storage, a fully enclosed space, had 8Mbps better transmission speed than wireless communication; this confirmed the superiority of surface wave communication in confined spaces on a vessel. Additional surface wave generators were designed and applied to resolve the paint issue. It is expected to use surface wave communication to implement the new wireless solution for Maritime-IoT system on vessels.

Autonomous Path-Tracking Performance of an OmniX-Type Boat Based on Open-Source Ardupilot with RTK GPS (RTK GPS를 이용한 오픈소스 아두파일럿 기반 OmniX 보트의 자율주행 경로 추적성에 관한 연구)

  • An, Nam-Hyun;Gu, Bon-Kuk;Park, Hui-Seung;Jang, Ho-Yun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.867-874
    • /
    • 2021
  • The IoT (Internet of Things) technology is rapidly becoming an important consideration in many engineering fields in the current 4th industrial era. In recent years, the concepts of digital shipbuilding and smart factories have been adopted as trends in shipyards. However, there is active interest in research on implementing autonomous driving in autonomous vehicles and airplanes, which is currently available in commercial form in a limited capacity. The present study is regarding the path-tracking performance of a boat to accomplish an autonomous driving mission using a flight controller (FC) and real-time kinematic (RTK) global positioning system (GPS) based on an open-source Ardupilot; an actual sea test is also performed using this system on a calm lake. The boat's mission is to evaluate the maneuverability of the self-driving process to a specific point and returning to the home position. For a given speed, the difference between the preset mission trajectory and actual operational trajectory was analyzed, and a series of studies were conducted on the applicability of the system to ships. In addition, the movements and maneuverability of the OmniX-type hull with four propellers were investigated, and the driving path-tracking performance was observed to increase by a maximum of 48%.

Development of Prediction Model for Yard Tractor Working Time in Container Terminal (컨테이너 터미널 야드 트랙터 작업시간 예측 모형 개발)

  • Jae-Young Shin;Do-Eun Lee;Yeong-Il Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.57-58
    • /
    • 2023
  • The working time for loading and transporting containers in the container terminal is one of the factors directly related to port productivity, and minimizing working time for these operations can maximize port productivity. Among working time for container operations, the working time of yard tractors(Y/T) responsible for the transportation of containers between berth and yard is a significant portion. However, it is difficult to estimate the working time of yard tractors quantitatively, although it is possible to estimate it based on the practical experience of terminal operators. Recently, a technology based on IoT(Internet of Things), one of the core technologies of the 4th industrial revolution, is being studied to monitoring and tracking logistics resources within the port in real-time and calculate working time, but it is challenging to commercialize this technology at the actual port site. Therefore, this study aims to develop yard tractor working time prediction model to enhance the operational efficiency of the container terminal. To develop the prediction model, we analyze actual port operation data to identify factors that affect the yard tractor's works and predict its working time accordingly.

  • PDF

A Study on the Visualization of HNS Hazard Levels to Prevent Accidents at Sea in Real-Time

  • Jeong, Min-Gi;Lee, Moonjin;Lee, Eun-Bang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.242-249
    • /
    • 2017
  • In order to develop an HNS safety management system to assess and visualize hazard levels via an automated method, we have conceptualized and configured a sample system. It is designed to quantify the risk of a vessel carrying HNS with a matrix method along navigational route and indicate hazards distribution with a contour map. The basic system which provides a visualized degree of hazards in real time has been introduced for the safe navigation of HNS ships. This is useful not only for decision making and circumstantial judgment but may also be utilized for HNS safety management with a risk base. Moreover, this system could be extended to address the navigational safety of marine traffic as well as of autonomous vessels in the near future if the sensors used are connected with IoT technology.