• Title/Summary/Keyword: 해수산성화

Search Result 11, Processing Time 0.022 seconds

Groundwater and Stream Water Acidification and Mixing with Seawater, and Origin of Liquefaction-Expelled Water in a Tertiary Formation in the Pohang Area (포항지역 제3기층내 지하수와 지표수의 산성화 및 해수혼합, 그리고 액상화 유출수 기원에 관한 연구)

  • Jeong, Chan Ho;Ou, Song Min;Lee, Yu Jin;Lee, Yong Cheon;Kim, Young Seog;Kang, Tae Seob
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.559-569
    • /
    • 2022
  • This study investigated the acidification and mixing with seawater of groundwater, stream water, and reservoir water in the Hunghae area of Pohang City, as well as the source of water expelled to the stream by liquefaction induced by the Pohang earthquake on 15 November 2017. Geologically, the area consists of Tertiary sedimentary rocks. We collected six samples of groundwater, five of reservoir water, four of stream water, two of liquefaction water, and one of seawater to analyze the chemical composition and stable isotopes (𝛿D and 𝛿18O). Gogkang Stream flows eastward through the central part of the study area into the East Sea. The groundwater and reservoir water in the lower part of the stream are acidic (pH < 4), have a Ca(Mg)-SO4 composition, and high concentrations of Al, Fe, and Mn, likely due to the oxidation of pyrite in Tertiary rocks. The groundwater in the upper part of the stream have a Ca(Na)-HCO3(Cl) composition, indicating the mixing of seawater with the stream water. The 𝛿D and 𝛿18O isotope data indicate the isotopic enrichment of reservoir water by evaporation. Based on the chemical and isotopic data, it is inferred that the two samples of liquefaction water originated from alluvium water in a transition zone with stream water, and from deep and shallow groundwaters that has been infiltrated by seawater, respectively.

Influence of the Increase of Dissolved $CO_2$ Concentration on the Marine Organisms and Ecosystems (해수중 용존 $CO_2$ 농도 증가가 해양생물 및 해양생태계에 미치는 영향: 국내외 사례 연구)

  • Lee, Jung-Suk;Lee, Kyu-Tae;Kim, Chan-Kook;Park, Gun-Ho;Lee, Jong-Hyeon;Park, Young-Gyu;Gang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.4
    • /
    • pp.243-252
    • /
    • 2006
  • Influence of the increasing carbon dioxide concentration in seawater on various marine organisms is assessed in this article with regard to the impacts of anthropogenic $CO_2$ introduced into surface or deep oceans. Recent proposals to sequester $CO_2$ in deep oceans arouse the concerns of adverse effects of increased $CO_2$ concentration on deep-sea organisms. Atmospheric introduction of $CO_2$ into the ocean can also acidify the surface water, thereby the population of some sensitive organisms including coral reefs, cocolithophorids and sea urchins will be reduced considerably in near future (e.g. in 2100 unless the increasing trend of $CO_2$ emission is actively regulated). We exposed bioluminescent bacteria and benthic amphipods to varying concentrations of $CO_2$ and also pH for a short period. The ${\sim}l.5$ unit decrease of pH adversely affected test organisms. However, amphipods were not influenced by decreasing pH when HCl was used for the seawater acidification. In this article, we reviewed the biological adverse effects of $CO_2$ on various marine organisms studied so for. Theses results will be useful to predict the potential risks of the increase of $CO_2$ concentrations in seawater due to the increase of atmospheric $CO_2$ emission and/or sequestration of $CO_2$ in deep oceans.

  • PDF

Impact of Climate Change on the Ocean Environment in the Viewpoint of Paleoclimatology (기후변화가 해양에 미친 영향: 고기후학의 관점에서)

  • Yi, Hi-Il;Shin, Im Chul
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.379-386
    • /
    • 2010
  • Impact of global warming on the ocean environment is reviewed based on most recently published publications. The most significant impact of global warming on marine environment is due to the melting of mountain and continental glaciers. Ice melting causes slow down and/or shut down of thermohaline circulation, and makes hypoxic environment for the first time, then makes anoxic with time. This can cause decreasing biodiversity, and finally makes global extinction of animals and plants. Furthermore, global warming causes sea-level rise, soil erosion and changes in calcium carbonate compensation depth (CCD). These changes also can make marine ecosystem unstable. If we emit carbon dioxide at a current rate, the global mean temperature will rise at least $6^{\circ}C$ at the end of this century, as predicted by IPCC (Intergovernmental Panel on Climate Change). In this case, the ocean waters become acidic and anoxic, and the thermohaline circulation will be halted, and marine ecosystems collapsed.

The Physiological Responses of Spotted Seahorse Hippocampus kuda to Low-pH Water (사육수의 pH변화가 복해마(Hippocampus kuda)에 미치는 생리적 영향)

  • Park, Cheonman;Kim, Ki-hyuk;Moon, Hye-Na;Yeo, In-Kyu
    • Journal of Life Science
    • /
    • v.27 no.7
    • /
    • pp.826-833
    • /
    • 2017
  • The rising concentration of atmospheric carbon dioxide is causing ocean acidification and global warming. The seahorse is an important species in marine ecosystems and fishery markets, however, their populations have recently decreased due to ocean acidification. As a result, we examined changes in the physiological responses of the spotted seahorse Hippocampus kuda when it was exposed to acidic sea water (pH 6.0, 6.5, and 7.0) and normal seawater (pH 8.0 as the control) over a period of 15 days. As the pH decreased, the seahorses' body weight and length also decreased. Components in body of ash, the crude lipids and crude proteins also differed significantly with changes in pH, due to stress caused by the seahorses' exposure to the acidic water conditions. The superoxide dismutase levels were significantly lower in the pH 6.0 and 6.5 groups than they were in the pH 7.0 and pH 8.0 groups. However, the catalase and glutathione levels were significantly higher in the acidic sea water groups. We suggest that decreasing the pH level of rearing water induces a stress response in H. kuda, damaging their ability to maintain their homeostasis and energy metabolism. Antioxidant enzymes are generally sensitive to acidic stress; in this study, the antioxidant activity was significantly affected by the pH level of the rearing water. These results indicate that physiological stress, induced by exposure to acidification, induces an antioxidant reaction, which can reduce general components in the body and the growth of H. kuda.

Characteristics of DIC(Dissolved Inorganic Carbon) Behavior On Sea Water with Bicarbonate Discharge (중탄산이온 농축해수의 해양방류에 따른 DIC 거동 특성)

  • Kwon, Sung-Min;Kim, Kang-Min;Lee, Joong-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.234-236
    • /
    • 2018
  • 기후변화는 더 이상 피할 수 없는 매우 중요한 문제다. 온실가스 중 큰 비중을 차지하는 이산화탄소 배출을 억제하거나 제거하기 위한 많은 연구들이 진행되고 있다. 최근에는 CCS 중 하나인 지중저장(underground storage)의 대안으로 해양에 이산화탄소를 저장하는 기술인 AWL(Accelerated Weathering of Limestone)을 이용한 해양저장(ocean storage)에 대한 연구가 진행되고 있다. AWL은 이산화탄소를 중탄산이온 형태의 농축수로 만들어 해양에 방류하여 희석 저장시키는 방법으로, 대기 중 재방출이 거의 발생하지 않고 배출된 농축수는 해양의 알칼리도를 높여 해양산성화를 방지할 수 있는 장점이 있다. 금회 연구는 AWL에 의한 방법 중 중탄산이온 농축수의 해양방류 시 이산화탄소 등을 포함하는 용존 무기탄소(DIC, Dissolved Inorganic Carbon)의 거동특성을 파악하기 위한 목적으로 수행하였다. 연구대상 해역은 충분한 수심과 작업효율성이 확보되는 울릉도 부근으로 설정하였으며, 거동특성을 파악하기 위하여 표층방류(surface discharge)와 수중방류(submerged discharge)에 의한 물질확산을 계산할 수 있는 CORMIX모형을 채택하였다. 실험결과, 방류 시점으로부터의 희석률을 고려했을 때, 표층방류 시나리오가 농축수 방류에 가장 적합한 방식이라고 사료된다.

  • PDF

Review on Ocean Carbon Sequestration through Direct Injection (심층 분사를 통한 해양 이산화탄소 격리 기술 소개)

  • Park, Young-Gyu;Choi, Sang-Hwa;Matsumoto, Katsumi;Lee, Jung-Suk;Gang, Seong-Gil;Hwang, Jin-Hwa
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.118-124
    • /
    • 2007
  • The oceans could absorb almost all the anthropogenic carbon dioxide the mankind has been producing eventually, but in the nature the air-sea $CO_2$ exchange occurs very slowly and to lower the atmospheric $CO_2$ concentration substantially $CO_2$ must be injected to the interior of the ocean directly. If we inject $CO_2$ collected at the major $CO_2$ sources into the international waters in the Philippine Sea or east of Japan, we could store the $CO_2$ in the oceans effectively for a few hundred years. When $CO_2$ is dissolved into the water, PH drops. The creatures adapted to the deep oceans where environment is very stable could be affected by even a small change in pH significantly. If, therefore, we are to inject $CO_2$ into the oceans, we must assess the effect of $CO_2$ injection in the marine ecosystem beforehand. Only when the damage to the marine ecosystem is smaller than the benefit from the $CO_2$ injection, $CO_2$ injection is effective.

  • PDF

Genotoxicity (DNA damage) on Blood Cells of Parrot Fish (Oplegnathus fasciatus) Exposed to Acidified Seawater Making of CO2 (이산화탄소로 산성화된 해수에 노출된 돌돔(Oplegnathus fasciatus) 혈구세포에 대한 유전독성(DNA 손상))

  • Choi, Tae Seob;Lee, Ji-Hye;Sung, Chan-Gyoung;Lee, Jung-Suk;Park, Young-Gyu;Kang, Seong-Gil
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.483-492
    • /
    • 2014
  • DNA damage such as genotoxicity was identified with comet assay, which blood cell of a marine parrot fish (Oplegnathus fasciatus) was exposed to an acidified seawater, lowered pH gradient making of $CO_2$ gas. The gradient of pH were 8.22, 8.03, 7.81, 7.55 with control as HBSS solution with pH 7.4. DNA tail moment of fish blood cell was $0.548{\pm}0.071$ exposed seawater of pH 8.22 condition, on the other hand, DNA tail moment $1.601{\pm}0.197$ exposed acidified seawater of pH 7.55 lowest condition. The approximate difference with level of DNA damage was 2.9 times between highest and lowest of pH. DNA damage with decreasing pH was significantly increased with DNA tail moment on blood cell of marine fish (ANOVA, p < 0.001). Ocean acidification, especially inducing the leakage of sequestered $CO_2$ in geological structure is a consequence from the burning of fossil fuels, and long term effects on marine habitats and organisms are not fully investigated. The physiological effects on adult fish species are even less known. This result shown that the potential of dissolved $CO_2$ in seawater was revealed to induce the toxic effect on genotoxicity such as DNA breakage.

Emerging Issues of East Asian Fisheries in Conjunction with Changes in Climate and Social Systems in the 21st Century (21세기 기후 및 사회체제 변화와 관련하여 동아시아 수산활동에서 떠오르는 사안들)

  • Kim, Suam;Low, Loh-Lee
    • Journal of Environmental Policy
    • /
    • v.10 no.3
    • /
    • pp.73-91
    • /
    • 2011
  • The fisheries in East Asia are reviewed in conjunction with climate change and social-economic developments in the 20th century. About one third of the human population resides in this region, producing a large share of the world's fisheries products, consuming them, and contributing significantly to the international trade of the products. Ongoing local and global climate changes, as well as ocean warming and acidification, are anticipated to have significant impacts on fisheries. Frequent typhoons have brought untold calamities and miseries to coastal communities. The rate of environmental change is outpacing our ability to respond effectively. The science must now move beyond identifying issues and toward providing sound bases for the development of innovative solutions, including effective adaptation and mitigation strategies. Fisheries management plans must be made to consider both changes in climate and social systems. It seems logical that an international forum should be made available to coordinate scientific research, management, and conservation of the region's fishery resources.

  • PDF

Effect Assessment and Derivation of Ecological Effect Guideline on CO2-Induced Acidification for Marine Organisms (이산화탄소 증가로 인한 해수 산성화가 해양생물에 미치는 영향평가 및 생태영향기준 도출)

  • Gim, Byeong-Mo;Choi, Tae Seob;Lee, Jung-Suk;Park, Young-Gyu;Kang, Seong-Gil;Jeon, Ei-Chan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.153-165
    • /
    • 2014
  • Carbon dioxide capture and storage (CCS) technology is recognizing one of method responding the climate change with reduction of carbon dioxide in atmosphere. In Korea, due to its geological characteristics, sub-seabed geological $CO_2$ storage is regarded as more practical approach than on-land storage under the goal of its deployment. However, concerns on potential $CO_2$ leakage and relevant acidification issue in the marine environment can be an important subject in recently increasing sub-seabed geological $CO_2$ storage sites. In the present study effect data from literatures were collected in order to conduct an effect assessment of elevated $CO_2$ levels in marine environments using a species sensitivity distribution (SSD) various marine organisms such as microbe, crustacean, echinoderm, mollusc and fish. Results from literatures using domestic species were compared to those from foreign literatures to evaluate the reliability of the effect levels of each biological group and end-point. Ecological effect guidelines through estimating level of pH variation (${\delta}pH$) to adversely affect 5 and 50% of tested organisms, HC5 and HC50, were determined using SSD of marine organisms exposed to the $CO_2$-induced acidification. Estimated HC5 as ${\delta}pH$ of 0.137 can be used as only interim quality guideline possibly with adequate assessment factor. In the future, the current interim guideline as HC5 of ${\delta}pH$ in this study will look forward to compensate with supplement of ecotoxicological data reflecting various trophic levels and indigenous species.

Cellular Energy Allocation of a Marine Polychaete Species (Perinereis aibuhitensis) Exposed to Dissolving Carbon Dioxide in Seawater (해수 중 용존 이산화탄소 농도 증가가 두토막눈썹참갯지렁이(Perinereis aibuhitensis)의 세포내 에너지 할당에 미치는 영향)

  • Moon, Seong-Dae;Lee, Ji-Hye;Sung, Chan-Gyoung;Choi, Tae Seob;Lee, Kyu-Tae;Lee, Jung-Suk;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.1
    • /
    • pp.9-16
    • /
    • 2013
  • An experiment was conducted to evaluate the biochemical adverse effect of increased carbon dioxide in seawater on marine polychaete, Perinereis aibuhitensis. We measured the available energy reserves, Ea (total carbohydrate, protein, and lipid content) and the energy consumption, Ec (electron transport activity) of Perinereis aibuhitensis exposed for 7-d to a range of $CO_2$ concentration such as 0.39 (control =390 ppmv), 3.03 (=3,030 ppmv), 10.3 (=10,300 ppmv), and 30.1 (=30,100 ppmv) $CO_2$ mM, respectively. The cellular energy allocation (CEA) methodology was used to assess the adverse effects of toxic stress on the energy budget of the test organisms. The results of a decrease in CEA effect of increased carbon dioxide in seawater from all individual in Ea and Ec. Increase of carbon dioxide reduced pH in seawater, significantly. The chemical changes in sea- water caused by increasing $pCO_2$ might cause stresses to test organisms and changes in the cellular energy allocations. Results of this study can be used to understand the possible influence of $CO_2$ concentration increased by the leakage from sub-sea bed storage sites as well as fossil fuel combustion on marine organisms.