DOI QR코드

DOI QR Code

Effect Assessment and Derivation of Ecological Effect Guideline on CO2-Induced Acidification for Marine Organisms

이산화탄소 증가로 인한 해수 산성화가 해양생물에 미치는 영향평가 및 생태영향기준 도출

  • 김병모 ((주)네오엔비즈 환경안전연구소) ;
  • 최태섭 ((주)네오엔비즈 환경안전연구소) ;
  • 이정석 ((주)네오엔비즈 환경안전연구소) ;
  • 박영규 (한국해양과학기술원 해양기후환경연구본부) ;
  • 강성길 (한국해양과학기술원 부설 선박해양플랜트연구소 해양CCS연구단) ;
  • 전의찬 (세종대학교 환경에너지융합학과)
  • Received : 2014.02.03
  • Accepted : 2014.03.26
  • Published : 2014.05.25

Abstract

Carbon dioxide capture and storage (CCS) technology is recognizing one of method responding the climate change with reduction of carbon dioxide in atmosphere. In Korea, due to its geological characteristics, sub-seabed geological $CO_2$ storage is regarded as more practical approach than on-land storage under the goal of its deployment. However, concerns on potential $CO_2$ leakage and relevant acidification issue in the marine environment can be an important subject in recently increasing sub-seabed geological $CO_2$ storage sites. In the present study effect data from literatures were collected in order to conduct an effect assessment of elevated $CO_2$ levels in marine environments using a species sensitivity distribution (SSD) various marine organisms such as microbe, crustacean, echinoderm, mollusc and fish. Results from literatures using domestic species were compared to those from foreign literatures to evaluate the reliability of the effect levels of each biological group and end-point. Ecological effect guidelines through estimating level of pH variation (${\delta}pH$) to adversely affect 5 and 50% of tested organisms, HC5 and HC50, were determined using SSD of marine organisms exposed to the $CO_2$-induced acidification. Estimated HC5 as ${\delta}pH$ of 0.137 can be used as only interim quality guideline possibly with adequate assessment factor. In the future, the current interim guideline as HC5 of ${\delta}pH$ in this study will look forward to compensate with supplement of ecotoxicological data reflecting various trophic levels and indigenous species.

이산화탄소 포집 및 저장기술(CCS: Carbon dioxide Capture and Storage)은 이산화탄소($CO_2$: Carbon dioxide)를 저감하여 기후변화에 대응하는 방법의 하나로 인식되고 있다. 국내에서는 해양지중저장을 통해 $CO_2$의 영구적인 격리를 목표로 연구를 진행하고 있다. 하지만, 이론적으로 안전한 해저 지층구조에 이산화탄소를 저장한다하더라도 CCS 사업과정 또는 중장기적인 지질학적 구조 변형으로 인해 저장된 $CO_2$가 해양환경으로 누출 될 가능성이 존재하기 때문에 CCS 사업 추진과정에서 환경 및 생태계 안전에 대하여 많은 관심을 기울여야한다. 만약에 $CO_2$의 누출이 발생할 경우 일차적으로 해수 및 해양퇴적물 내 공극수의 pH를 낮추게 될 것이며, 이로 인해 해양 생물은 부정적인 영향을 받을 수 있다. 따라서 해양생태계를 보호하고 안전한 해양지중저장을 위해서는 이산화탄소에 노출된 해양생물의 영향 정도를 파악하고, 정량적인 생태위해성평가를 통해 합리적인 생태영향기준을 마련하는 것이 CCS 기술의 실용화를 위해서 매우 중요한 요소라 할 수 있다. 이러한 배경하에서 본 연구에서는 누출된 $CO_2$로부터 해양생태계 보호를 위한 생태영향기준 마련을 위해 $CO_2$ 노출에 따른 생물영향 자료를 기반으로 종민감도분포(SSD: Species Sensitivity Distribution)를 이용해 해양생물보호를 위한 pH 변화수준(${\delta}pH$)을 추정하여 정량적 생태위해성평가 기반의 잠정기준을 도출하였다. 정량적 생태위해성평가를 위한 생물영향자료는 미생물, 갑각류, 극피동물, 연체동물, 환형동물, 어류 등 다양한 해양생물에 대한 $CO_2$ 노출영향 평가연구자료를 비교 분석하여 확보하였다. 해양생물에 대한 $CO_2$ 노출영향 pH 범위는 6.61~8.22 이었으며, 수집된 자료로부터 무영향관찰농도(NOEC: No Observed Effect Concentrations)를 추정하고 종민감도분포를 이용하여 상위 95%의 생물종을 보호할 수 있는 ${\delta}pH$ 0.137을 추정하였다. 추정된 ${\delta}pH$는 불확실성을 고려하여 평가계수(assessment factor)를 이용하여 보정하거나, 보정없이 생태영향기준(pH 변화수준)으로 활용될 수 있을 것으로 기대한다. 다만 본 연구에 활용된 생물영향자료가 국내 서식생물 또는 $CO_2$ 저장후보지의 지역 특이적인 생물에 대한 자료가 충분하지 않아 명확한 안전수준으로 활용되기에는 제한될 수 있을 것으로 판단된다. 추후 생물영양단계 및 지역특이적으로 서식하는 생물에 대한 충분한 생물영향자료의 보강을 통해 이러한 단점을 보완할 수 있을 것으로 기대한다.

Keywords

References

  1. Anlauf, H., D'Croz, L. and O'Dea, A., 2011, "A corrosive concoction: The combined effects of ocean warming and acidification on the early growth of a stony coral are multiplicative", J. Exp. Mar. Biol. Ecol.,Vol. 397, pp. 13-20. https://doi.org/10.1016/j.jembe.2010.11.009
  2. Anonymous, 2009, "Directive 2009/31/EC of the European Parliament and of the Council of 23 April 2009 on the geological storage of carbon dioxide and amending Council Directive 85/ 337/EEC", European Parliament and Council Directives 2000/ 60/EC, 2001/80/EC, 2004/35/EC, 2006/12/EC, 2008/1/EC and Regulation (EC) No. 1013/2006. Off. J. Eur. Union L140, 114-35.
  3. Byrne, M., Soars, N., Selvakumaraswamy, P., Dworjanyn, S.A., Davis, A.R., 2010a, "Sea urchin fertilization in a warm, acidified and high p$CO_{2}$ ocean across a range of sperm densities", Mar. Environ. Res., Vol. 69, pp. 234-239. https://doi.org/10.1016/j.marenvres.2009.10.014
  4. Byrne, M., Soars, N.A., Ho, M.A., Wong, E., McElroy, D., Selvakumaraswamy, P., Dworjanyn, S.A. and Davis, A.R., 2010b, "Fertilization in a suite of coastal marine invertebrates from SE Australia is robust to near-future ocean warming and acidification", Mar. Biol., Vol. 157, pp. 2061-2069. https://doi.org/10.1007/s00227-010-1474-9
  5. Crim, R.N., Sunday, J.M. and Harley, C.D.G., 2011, "Elevated seawater $CO_{2}$ concentrations impair larval development and reduce larval survival in endangered northern abalone (Haliotiskamtschatkana)", J. Exp. Mar. Biol. Ecol. Vol. 400, pp. 272-277. https://doi.org/10.1016/j.jembe.2011.02.002
  6. Cummings, V., Hewitt, J., van Rooyen, A., Currie, K., Beard, S., Thrush, S., Norkko, J., Barr, N., Heath, P. and Halliday, N.J., 2011, "Ocean acidification at high latitudes: Potential effects on functioning of the antarctic bivalve Laternulaelliptica", PLoSOne. 6. e16069. https://doi.org/10.1371/journal.pone.0016069
  7. De Vries, P., Tamis, J.E., Murk, A.J. and Smit, M.G.D., 2008, "Development and application of a species sensitivity distribution for temperature-induced mortality in the aquatic environment", Environ. Toxico. Chem., Vol 27, pp. 2591-2598. https://doi.org/10.1897/08-056.1
  8. Ericson, J.A., Lamare, M.D., Morley, S.A. and Barker, M.F., 2010, "The response of two ecologically important Antarctic invertebrates (Sterechinusneumayeriand Parborlasiacorrugatus) to reduced seawater pH: Effects on fertilisation and embryonic development", Mar. Biol., Vol. 157, pp. 2689-2702. https://doi.org/10.1007/s00227-010-1529-y
  9. European Chemicals Agency, 2008, "Guidance on Information Requirements and Chemical Safety Assessment Chapter R.10: Characterisation of dose [Concentration]-Response for Environment", Helsinki, Finland.
  10. Feibicke, M. and Ahlers, J., 2001, "Environmental effects assessment for substances with large database some more detailed explanations. Prepared for EU-ECB special technical meeting: PNEC derivation for data-rich substances", Umwelt Bundes Amt, Berlin.
  11. Findlay, H.S., Kendall, M.A., Spicer, J.I. and Widdicombe, S., 2010, "Relative influences of ocean acidification and temperature on intertidal barnacle post-larvae atthenorthern edge of their geographic distribution", Estuar. Coast. Shelf Sci., Vol 86, pp. 675-682. https://doi.org/10.1016/j.ecss.2009.11.036
  12. Gazeau, F., Gattuso, J.-P., Dawber, C., Pronker, A.E., Peene, F., Peene, J. and Heip, C.H.R., Middelburg, J.J., 2010, "Effect of ocean acidification on the early life stages of the blue mussel (Mytilusedulis)", Biogeosci. Discuss., Vol 7, pp. 2927-2947. https://doi.org/10.5194/bgd-7-2927-2010
  13. Gim, B.M., Choi, T.S., Lee, J.S., Park, Y.G., Kang, S.G. and Jeon, E.C., 2013, "Evaluation system of environmental safety on marine geological sequestration of captured carbon dioxide", J. KOSMEE, Vol. 16, No. 1, pp. 42-52.
  14. Hale, R., Calosi, P., McNeill, L., Mieszkowska, N. and Widdicombe, S., 2011, "Predicted levels of future ocean acidification and temperature rise could alter community structure and biodiversity in marine benthic communities", Oikos, Vol. 120, pp. 661-674. https://doi.org/10.1111/j.1600-0706.2010.19469.x
  15. Hauton, C., Tyrrell, T. and Williams, J., 2009, "The subtle effects of sea water acidification on the amphipod Gammarus locusta", Biogeosci. Discuss, Vol. 6, pp. 919-946. https://doi.org/10.5194/bgd-6-919-2009
  16. Havenhand, J.N., Buttler, F.-R., Thorndyke, M.C., and Williamson, J.E., 2008, "Near-future levels of ocean acidification reduce fertilization success in a sea urchin", Curr. Biol., Vol. 18, pp. 651-652. https://doi.org/10.1016/j.cub.2008.06.015
  17. Havenhand, J.N. and Schlegel, P., 2009, "Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostreagigas", Biogeosciences, Vol. 6, pp. 3009-3015. https://doi.org/10.5194/bg-6-3009-2009
  18. International Energy Agency(IEA), 2012, "Energy Technology Perspectives 2012", http://www.iea.org/publications/freepublications/ publication/ETP_Executive_Sum_Korean_WEB.pdf.
  19. IPCC, 2005, "IPCC Special Report on Carbon Dioxide Capture and Storage, Intergovernmental Panel on Climate Change 2005", ISBN-13 978-0-521-86643-9.
  20. Kang, S.G., Heo, C., 2010, 2011, 2012, 2013, "Report on development of technology with $CO_{2}$ marine sequestration", Ministry of Oceans and Fisheries (MOF).
  21. Knutzen, J., 1981, "Effects of decreased pH on marine organisms", Mar. Pollut. Bull., Vol. 12, pp. 25-29. https://doi.org/10.1016/0025-326X(81)90136-3
  22. Kurihara, H., Shimode, S. and Shirayama, Y., 2004a, "Effects of raised $CO_{2}$ concentration on the egg production rate and early development of two marine copepods (Acartiasteueri and Acartiaerythraea)", Mar. Pollut. Bull., Vol. 49, pp. 721-727. https://doi.org/10.1016/j.marpolbul.2004.05.005
  23. Kurihara, H., Shimode, S. and Shirayama, Y., 2004b, "Sub-lethal effects of elevated concentration of $CO_{2}$ on planktonic copepods and sea urchins", J. Oceanogr., Vol. 60, pp. 743-750. https://doi.org/10.1007/s10872-004-5766-x
  24. Kurihara, H. and Shirayama, Y., 2004, "Effects of increased atmospheric $CO_{2}$ on sea urchin early development", Mar. Ecol. Prog. Ser., Vol. 274, pp. 161-169. https://doi.org/10.3354/meps274161
  25. Lischka, S., Budenbender, J., Boxhammer, T. and Riebesell, U., 2010, "Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacinahelicina: Mortality, shell degradation, and shell growth", Biogeosci. Discuss., Vol. 7, pp. 8177-8214. https://doi.org/10.5194/bgd-7-8177-2010
  26. Melatunan, S., Calosi, P., Rundle, S.D., Widdicombe, S. and Moody, A.J., 2013, "Effects of ocean acidification and elevated temperature on shell plasticity and its energetic basis in an intertidal gastropod", MEPS2013, Vol. 472, pp. 155-168.
  27. Michaelidis, B., Ouzounis, C., Paleras, A. and Portner, H.O., 2005, "Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels Mytilusgalloprovincialis", Mar. Ecol. Prog. Ser., Vol. 293, pp. 109-118. https://doi.org/10.3354/meps293109
  28. Miller, A.W., Reynolds, A.C., Sobrino, C. and Riedel, G.F., 2009, "Shellfish face uncertain future in high $CO_{2}$ world: Influence of acidification on oyster larvae calcification and growth in estuaries", PLoSOne2009, 4, doi:10.1371/journal.pone. 0005661.
  29. Ministry of Land, Transport and Maritime Affairs (MLTM), 2012, "Press Release by Marine Conservation Division of MLTM on 2012. 4. 4".
  30. Ministry of Environment, 2013, "환경유해인자의 위해성 평가를 위한 절차와 방법 등에 관한 지침 14조[시행 2013.4.17]", [환경부예규 제480호, 2013.4.17, 일부개정].
  31. Moon, S.D., Lee, J.H., Sung, C.G., Choi, T.S., Lee, K.T., Lee, J.S. and Kang, S.G., 2013a, "Cellular Energy Allocation of a Marine Polychaete Species (Perinereisaibuhitensis) Exposed to Dissolving Carbon Dioxide in Seawater", Journal of the Korean Society for Marine Environment and Energy Vol. 16, No.1., pp. 9-16, February 2013. https://doi.org/10.7846/JKOSMEE.2013.16.1.9
  32. Moon, S.D., Choi, T.S., Sung, C.G., Lee, J.S., Park, Y.G. and Kang, S.G., 2013b, "Chronic Effect Exposed to Carbon Dioxide in Benthic Environment with Marine Invertebrates Copepod (Tisbesp.) and Amphipod (Monocorophium acherusicum)", Journal of Environmental Science International, Vol. 22(3), pp. 359-369. https://doi.org/10.5322/JESI.2013.22.3.359
  33. Moulin, L., Catarino, A.I., Claessens, T. and Dubois, P., 2011, "Effects of seawater acidification on early development of the intertidal sea urchin (Paracentrotuslividus)", Mar. Pollut. Bull., Vol. 62, pp. 48-54. https://doi.org/10.1016/j.marpolbul.2010.09.012
  34. Munday, P.L., Donelson, J.M., Dixson, D.L. and Endo, G.G.K., 2009, "Effects of ocean acidification on the early life history of a tropical marine fish", Proc. R. Soc., B2009, 276, pp. 3275-3283. https://doi.org/10.1098/rspb.2009.0784
  35. Munday, P.L., Gagliano, M., Donelson, J.M., Dixson, D.L. and Thorrold, S.R, 2011, "Ocean acidification does not affect the early life history development of a tropical marine fish", Mar. Ecol. Prog. Ser., Vol. 423, pp. 211-221. https://doi.org/10.3354/meps08990
  36. National Oceanographic Data Center, 2009, "World Ocean Atlas".
  37. Newman, M.C., Ownby, D.R., Mezin, L.C.A., Powell, D.C., Christensen, T.R.L., Lerberg, S.B. and Anderson, B.A., 2000, "Applying species-sensitivity distributions in ecological risk assessment: assumptions of distribution type and sufficient numbers of species", Environ. Toxicol. Chem., Vol. 19, pp. 508-511.
  38. Parker, L.M., Ross, P.M. and Connor, W.A., 2009, "The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostreaglomerata (Gould1850)", Glob. ChangeBiol., Vol. 15, pp. 2123-2136. https://doi.org/10.1111/j.1365-2486.2009.01895.x
  39. Pepijn de Vries, 2013, "To quantitative ecological risk assessemtn of elevated carbon dioxide levels in the mairne environment", Mrine Pollution Bulletin 73(2013), pp. 516-523. https://doi.org/10.1016/j.marpolbul.2013.06.039
  40. Portner, H.O., 2008, "Ecosystem effects of ocean acidification in times of ocean warming: a physiologist' view", Marine Ecology Progress Series, Vol. 373, pp. 203-217. https://doi.org/10.3354/meps07768
  41. Posthuma, L., Suter II, G.W. and Traas, T.P., 2002, "Species sensitivity distribution in ecotoxicology", CRC Press. LLC. Boca Raton. Fl., USA.
  42. Reuter, K.E., Lotterhos, K.E., Crim, R.N., Thompson, C.A. and Harley, C.D.G., 2011, "Elevated p$CO_{2}$ increases sperm limitation and risk of polyspermy in the red sea urchin Strongylocentrotusfranciscanus", Global Change Biol., Vol. 17, pp. 163-171. https://doi.org/10.1111/j.1365-2486.2010.02216.x
  43. Riebesell, U., Fabry, V.J., Hansson, L. and Gattuso, J.P., 2010, "Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union", Lux embourg, p. 260.
  44. Rosa, R. and Seibel, B.A., 2008, "Synergistic effects of climaterelated variables suggest future physiological impairment in a top oceanic predator", Proc. Natl. Acad. Sci., USA2008, Vol 105, pp. 20776-20780. https://doi.org/10.1073/pnas.0806886105
  45. Seibel, B.A. and Walsh, P.J., 2003, "Biological impacts of deep sea carbon dioxide injection inferred from indices of physiological performance", J. of Experimental Biology, Vol. 206, pp. 641-650. https://doi.org/10.1242/jeb.00141
  46. Smit, M.G.D., Holthaus, K.I.E., Trannum, H.C., Neff, J.M., Kjeilen-Eilertsen, G., Jak, R.G., Singsaas, I., Huijbregts, M.A.J. and Hendriks, A.J., 2008, "Species sensitivity distributions for suspended clays, sediment burial, and grain size change in the marine environment", Environ. Toxicol. Chem., Vol. 27, pp. 1006-1012. https://doi.org/10.1897/07-339.1
  47. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L., 2007, "Climate Change 2007: The Physical Science Basis - Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change", Cambridge University Press, Cambridge.
  48. Struijs, J., De Zwart D., Posthuma, L., Leuven, R.S.E.W. and Huijbregts, M.A.J., 2011, "Field sensitivity distribution of macro invertebrates for phosphorus in inland waters", Integr. Environ. Assess. Manage., Vol. 7, pp. 280-286. https://doi.org/10.1002/ieam.141
  49. Stumpp, M., Dupont, S., Thorndyke, M.C. and Melzner, F., 2011, "$CO_{2}$ induced seawater acidification impacts sea urchin larval development II: Gene expression patterns in pluteus larvae", Comp. Biochem. Physiol. AMol. Integr. Physiol., Vol. 160, pp. 320-330. https://doi.org/10.1016/j.cbpa.2011.06.023
  50. Sung, C.G., Moon, S.D., Kim, H.J., Choi, T.S., Lee, K.T., Lee, J.S. and Kang, S.G., 2010, "Influence of increased carbon dioxide concentration on the bioluminescence and cell density of marine bacteria Vibriofischeri", The Sea Journal of the Korea Society of Oceanography Vol. 15, No. 1, pp. 8-15.
  51. Sung, C.G., Kim, T.W., Park, Y.G., Kang, S.G., Inaba, K., Shiba, K., Choi, T.S., Moon, S.D., Litvin, S., Lee, K.T. and Lee, J.S., 2013, "Near future levels of seawater acidification by increasing p$CO_{2}$ decrease fertilization success of the sea urchin, Strongylocentrotusnudus (in review)", Journal of Marine Systems.
  52. Suwa, R., Nakamura, M., Morita, M., Shimada, K., Iguchi, A., Sakai, K. and Suzuki, A., 2010, "Effects of acidified seawater on early life stages of scleractinian corals (Genus Acropora)", Fish. Sci., Vol. 76, pp. 93-99. https://doi.org/10.1007/s12562-009-0189-7
  53. Van der Zwaan B. and Smekens, K., 2009, "$CO_{2}$ capture and storage with leakage in an energy-climate model", Environ. Model. Assess., Vol. 14, pp. 135-148. https://doi.org/10.1007/s10666-007-9125-3
  54. Van Straalen, N.M. and Van Rijn J.P., 1998, "Ecotoxicological risk assessment of soil fauna recovery from pesticide pplication", Review of Environmental Contamination and Toxicology 154, pp. 85-141.
  55. Walther, K., Anger, K. and Portner, H.O., 2010, "Effects of ocean acidification and warming on the larval development of the spider crab Hyas araneus from different latitudes ($54^{\circ}$ vs. $79^{\circ}N$)", Mar. Ecol. Prog. Ser., Vol. 417, pp. 159-170. https://doi.org/10.3354/meps08807
  56. Yu, P.C., Matson, P.G., Martz, T.R. and Hofmann, G.E., 2011, "The ocean acidification seascape and its relationship to the performance of calcifying marine invertebrates: Laboratory experiments on the development of urchin larvae framed by environmentallyrelevantp $CO_{2}$/pH", J. Exp. Mar. Biol. Ecol., Vol. 400, pp. 288-295. https://doi.org/10.1016/j.jembe.2011.02.016