Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.7.826

The Physiological Responses of Spotted Seahorse Hippocampus kuda to Low-pH Water  

Park, Cheonman (Department of Marine life Science, Jeju National University)
Kim, Ki-hyuk (Department of Marine life Science, Jeju National University)
Moon, Hye-Na (Department of Marine life Science, Jeju National University)
Yeo, In-Kyu (Department of Marine life Science, Jeju National University)
Publication Information
Journal of Life Science / v.27, no.7, 2017 , pp. 826-833 More about this Journal
Abstract
The rising concentration of atmospheric carbon dioxide is causing ocean acidification and global warming. The seahorse is an important species in marine ecosystems and fishery markets, however, their populations have recently decreased due to ocean acidification. As a result, we examined changes in the physiological responses of the spotted seahorse Hippocampus kuda when it was exposed to acidic sea water (pH 6.0, 6.5, and 7.0) and normal seawater (pH 8.0 as the control) over a period of 15 days. As the pH decreased, the seahorses' body weight and length also decreased. Components in body of ash, the crude lipids and crude proteins also differed significantly with changes in pH, due to stress caused by the seahorses' exposure to the acidic water conditions. The superoxide dismutase levels were significantly lower in the pH 6.0 and 6.5 groups than they were in the pH 7.0 and pH 8.0 groups. However, the catalase and glutathione levels were significantly higher in the acidic sea water groups. We suggest that decreasing the pH level of rearing water induces a stress response in H. kuda, damaging their ability to maintain their homeostasis and energy metabolism. Antioxidant enzymes are generally sensitive to acidic stress; in this study, the antioxidant activity was significantly affected by the pH level of the rearing water. These results indicate that physiological stress, induced by exposure to acidification, induces an antioxidant reaction, which can reduce general components in the body and the growth of H. kuda.
Keywords
Antioxidative activity; ocean acidification; pH stress; physiological response; spotted seahorse;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Baeck, S. K. 2012. Combined effect of Cu and temperature on physiological and biochemical change of rock fish, Sebastes schlegeli. Master. Thesis, Pukyong National University, Pusan, Korea.
2 Brett, J. R. and Groves, T. D. D. 1979. Physiological energetics, pp. 279-352. In: Hoar, W. S., Randall, D. J. and Brett, J. R(eds.) Fish physiology. Academic press, New York.
3 Bonga, S. W. 1997. The stress response in fish. Physiol. Rev. 77, 591-625.   DOI
4 Calabrese, A. and Davis, H. C. 1966. The pH tolerance of embryos and larvae of Mercenaria mercenaria and Crassostrea virginica. Biol. Bull. 131, 427-436.   DOI
5 She, M., He, G. X., Chen, H. and Jin, Z. J. 1995. An experimental study of five species halobios on anti-aging activity. Chinese J. Mar. Drugs 53, 30-34.
6 Shin, M. J, Kwon, C. O., Lee, J. E. and Seo, E. W. 2010. Effects of cadmium exposure on tissues of carassius auratus. J. Life Sci. 20, 1490-1497.   DOI
7 Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. and Miller, H. L. 2007. Climate change 2007: The physical science basis: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, pp. 97, Cambridge University Press, New York, U. S. A.
8 Vincent, A. C., Foster, S. J. and Koldewey, H. J. 2011. Conservation and management of seahorses and other Syngnathidae. J. Fish Biol. 78, 1681-1724.   DOI
9 Vincent, A. C. 1996. The International trade in Seahorses, pp. 4-163. TRAFFIC International, Cambridge, U. K.
10 Waring, C. P., Stagg, R. M. and Poxton, M. G. 1996. Physiological responses to handling in the turbot. J. Fish Biol. 48, 161-173.   DOI
11 Wedemeyer, G. A. and Yasutake, T. W. 1977. Clinical methods for the assessment of the effects of environmental stress on fish health. U. S. Fish Wildl. Ser. Tech. Pap. 89, 1-14.
12 Hilomen‐Garcia, G. V., Delos Reyes, R. and Garcia, C. M. H. 2003. Tolerance of seahorse Hippocampus kuda (Bleeker) juveniles to various salinities. J. Appl. Ichthyol. 19, 94-98.   DOI
13 White, C. C., Viernes, H., Krejsa, C. M., Botta, D. and Kavanagh, T. J. 2003. Fluorescence-based microtiter plate assay for glutamate-cysteine ligase activity. Anal. Biochem. 318, 175-180.   DOI
14 Wu, G. Y. 2009. Amino acids: metabolism, functions, and nutrition. Amino Acids. 37, 1-17.
15 Xu, Y. M., Chen, J. W. and Guo, R. 1994. Studies on the phospholipids and fatty acids in traditional chinese medicinal materials Hippocampus and Syngnathus. Chinese J. Mar. Drugs 49, 14-18.
16 Choi, Y. U., Rho, S., Jung, M. M., Lee, Y. D. and Noh, G. A. 2006. Parturition and early growth of Crowned Seahorse, Hippocampus coronatus in Korea. J. Aquaculture 19, 109-118.
17 Dalton, D. A., Langeberg, L. and Treneman, N. C. 1993. Correlations between the ascorbate glutathione pathway and effectiveness in legume root nodules. Physiol. Plant. 87, 365-370.   DOI
18 Forman, H. J. and Fridovich, I. 1973. Superoxide dismutase: a comparison of rate constant. Arch. Biochem. Biophys. 158, 396.   DOI
19 Foster, S. J. and Vincent, A. C. J. 2004. Life history and ecology of seahorses: implications for conservation and management. J. Fish Biol. 65, 1-61.
20 Horwitz, W. and Latimer, G. 2005. AOAC-Association of official analytical chemists, pp. 75-76, Official Methods of Analysis of AOAC International 18th ed., Gaithersburg, Maryland, USA.
21 Ishibashi, Y., Ekawa, H., Hirata, H. and Kumai, H. 2002. Stress response and energy metabolism in various tissues of Nile tilapia Oreochromis niloticus exposed to hypoxic conditions. Fish Sci. 68, 1374-1383.   DOI
22 Jo, S. H. and Kim, H. Y. 2014. Changes in hematological responses and antioxidative enzyme activities of japanese eel Anguilla japonica exposed to Elevated Ambient Nitrite. Kor. J. Fish Aquat. Sci. 47, 860-868.
23 Kim, I. S. and Lee, W. O. 1995. First record of the seahorse fish, Hippocampus trimaculatus (Pisces: Syngnathidae) from Korea. Kor. J. Zool. 38, 74-77.
24 Knutzen, J. 1981. Effects of decreased pH on marine organisms. Mar. Pollut. Bull. 12, 25-29.   DOI
25 Zhang, Z. H., Xu, G. J., Xu, L. S. and Wang, Q. 1994. Inhibitory effects of Hippocampus SPP. extracts on L-glutamic acid induced Ca influx in rats' neurons. Chinese J. Mar. Drugs 52, 6-9.
26 Yue, X. L., Yang, T. W. and Wei, B. H. 1995. Trace elements and amino acids analysis of Hippocampus and Solenognathus. J. Tradit. Chin. Med. 7, 18-19.
27 Zhang, J., Shen, H., Wang, X., Wu, J. and Xue, Y. 2004. Effects of chronic exposure of 2, 4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus. Chemosphere 55, 167-174.   DOI
28 Zhu, A. M. 2005. Pharmacologic researches on ethanol extracts from Hippocampus. Chinese Pharmaceutical Affairs 19, 23-24.
29 Lin, Q., Lu, J., Gao, Y., Shen, L., Cai, J. and Luo, J. 2006. The effect of temperature on gonad, embryonic development and survival rate of juvenile seahorses, Hippocampus kuda Bleeker. Aquaculture 254, 701-713.   DOI
30 Kuwatani, Y. and Nishii, T. 1969. Effects of pH of culture water on the growth of the Japanese pearl oyster. Bull. Jpn. Soc. Sci. Fish. 35, 242-250.
31 Lourie, S. A., Foster, S. J., Cooper, E. W. T. and Vincent, A. C. J. 2004. A guide to the identification of seahorses, pp. 114, Project Seahorse and TRAFFIC North America, Washington D.C.
32 Lin, Q., Zhang, D. and Lin, J. 2009. Effects of light intensity, stocking density, feeding frequency and salinity on the growth of sub-adult seahorses Hippocampus erectus Perry, 1810. Aquaculture 292, 111-116.   DOI
33 Lischka, S., Büdenbender, J., Boxhammer, T. and Riebesell, U. 2011. Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation, and shell growth. Biogeosciences 8, 919.   DOI
34 Liu, H., Zhang, J. F., Shen, H., Wang, X. R. and Wang, W. M. 2005. Impact of copper and Its EDTA complex on the glutathione dependent antioxidant system in freshwater Fish (Carassius auratus). Bull. Environ. Contam. Toxicol. 74, 1111-1117.   DOI
35 Magee, J. A., Obedzinski, M., McCormick, S. D. and Kocik, J. F. 2003. Effects of episodic acidification on Atlantic salmon (Salmo salar) smolts. Can. J. Fish Aquat. Sci. 60, 214-221.   DOI
36 Martinez-Cardenas, L. and Purser, G. J. 2011. Effect of temperature on growth and survival in cultured early juvenile pot-bellied seahorses, Hippocampus abdominalis. J. World Aquac. Soc. 42, 854-862.   DOI
37 Parihar, M. S., Dubey, A. K., Javeri, T. and Prakash, P. 1996. Changes in lipid peroxidation, superoxide dismutase activity, ascorbic acid and phospholipid content in liver of freshwater catfish Heteropneustes fossilis exposed to elevated temperature. J. Therm. Biol. 21, 323-330.   DOI
38 Moon, S. D., Lee, J. H, Sung, C. G., Choi, T. S., Lee, K. T., Lee, J. S. and Kang, S. G. 2013. Cellular energy allocation of a marine polychaete species (Perinereis aibuhitensis) exposed to dissolving carbon dioxide in seawater. J. Kor. Soc. Mar. Environ. Energy 16, 9-16.   DOI
39 Moore, A. 1994. An electrophysiological study on the effects of pH on olfaction in mature male Atlantic salmon (Salmo salar) parr. J. Fish Biol. 45, 493-502.   DOI
40 Nardocci, G., Navarro, C., Cortes, P. P., Imarai, M., Montoya, M., Valenzuela, B. and Fernandez, R. 2014. Neuroendocrine mechanisms for immune system regulation during stress in fish. Fish Shellfish Immunol. 40, 531-538.   DOI
41 Parihar, M. S., Javeri, T., Hemnani, T., Dubey, A. K. and Prakash, P. 1997. Responses of superoxide dismutase, glutathione peroxidase and reduced glutathione antioxidant defenses in gills of the freshwater catfish (Heteropneustes fossilis) to short-term elevated temperature. J. Therm. Biol. 22, 151-156.   DOI
42 Ryu, B., Qian, Z. J. and Kim, S. K. 2010. SHP-1, a novel peptide isolated from seahorse inhibits collagen release through the suppression of collagenases 1 and 3, nitric oxide products regulated by NF-kB/P38 kinase. Peptides 31, 79-87.   DOI
43 Saunders, R. L., Henderson, E. B., Harmon, P. R., Johnston, C. E. and Eales, J. G. 1983. Effects of low environmental pH on smolting of Atlantic salmon (Salmo salar). Can. J. Fish Aquatu. Sci. 408, 1203-1211.
44 Schreck, C. B. 1982. Stress and rearing of salmonids. Aquaculture 28, 241-249.   DOI