• Title/Summary/Keyword: 해상의료

Search Result 124, Processing Time 0.03 seconds

Development of High speed FFT system using OpenMP on TI multicore DSP (OpenMP를 활용한 TI 다중코어 DSP기반의 고속 FFT 처리부 개발)

  • Nam, Kyungho;Oh, Woojin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.962-964
    • /
    • 2014
  • 신호처리 시스템에서 FFT는 많이 사용되고 있으며, 고속화를 위하여 많은 연구가 진행되어 왔다. FFT은 통신, 영상처리, 레이더 등 많은 영역에서 직접 또는 변형되어 많이 활용되고 있으나 실시간 처리 속도 한계와 가격의 문제로 FFT 길이가 제한되는 경우가 많다. 본 연구에서는 TI사의 고속 DSP인 8 core의 TMS320C6678에 OpenMP 병렬처리 기법으로 FFT를 구현한 결과를 제시한다. 속도 개선을 위한 다양한 병렬처리 방안에 대하여 단일 FFT의 길이별 성능과 다중 FFT를 처리하기 위한 방안을 제안하였다. 이러한 OpenMP기반의 FFT는 DSP간 hyperlink 연결로 다수의 DSP로 병렬처리로 성능 개선이 가능하며, 본 연구에서는 16 core로 확장하여 그 성능이 30% 내외 개선되는 것을 보였다. 본 연구 결과는 초 고속 신호처리가 요구되는 의료영상, 초고해상도 영상처리, 고정밀 레이더 등에 활용이 가능할 것이다.

  • PDF

항로표지 수집정보 품질개선 알고리즘 개발

  • 정제한;이예경;장준혁;오세웅;양진홍;한준희;옥수열;신상문
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.303-305
    • /
    • 2023
  • 수집된 데이터의 품질을 진단하고 개선하는 것은 품질 관리 측면에 있어 중요하다. 본 연구에서는 항로표지 수집정보의 품질을 개선하기 위해 새로운 알고리즘을 개발하고 이를 시험하는 방안에 대해 분석하였다. 개발된 알고리즘은 기존의 알고리즘보다 더욱 정확하고 신뢰성이 높으며, 항로표지 수집정보의 오류율을 크게 감소시킨다. 이에 따라, 개발된 알고리즘을 적용함으로써 항로표지 수집정보의 품질을 향상시킬 수 있으며, 해상 안전성을 높이는 데 기여할 것으로 기대된다.

  • PDF

A Study on the Resolution Analysis of Digital X-ray Images with increasing Thickness of PMMA (조직 등가물질 두께 증가에 따른 디지털 엑스선 영상의 해상도 분석에 관한 연구)

  • Kim, Junwoo
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.173-179
    • /
    • 2021
  • Scattered x-ray generated by digital radiography systems also have the advantage of increasing signals, but ultimately detectability is reduced by decreasing resolution and increasing noise of x-ray images transmitted objects. An indirect method of measuring scattered x-ray in a modulation-transfer function (MTF) for evaluating resolution in a spatial-frequency domain can be considered as a drop in the MTF value corresponding to zero-frequency. In this study, polymethyl methacrylate (PMMA) was used as a patient tissue equivalent, and MTFs were obtained for various thicknesses to quantify the effect of scattered x-ray on resolution. X-ray image signals were observed to decrease by 35 ~ 83% with PMMA thickness increasing, which is determined by the absorption or scattering of x-rays in PMMA, resulting in reduced MTF and increased scatter fraction. The method to compensate for MTF degradation by PMMA resulted in the MTF inflation without considering the optical spreading generated by the indirect-conversion type detector. Data fitting or zero-padding are needed to compensate for MTF more reasonably on edge-spread function or line-spread function.

Evaluation of the Usefulness of Virtual Reality Equipment for Relieving Patients' Anxiety during Whole-Body Bone Scan (전신 뼈 검사 환자의 불안감 해소를 위한 가상현실 장비의 유용성 평가)

  • Kim, Hae-Rin;Kim, Jung-Yul;Lee, Seung-Jae;Baek, Song-Ee;Kim, Jin-Gu;Kim, Ga-Yoon;Nam-Koong, Hyuk;Kang, Chun-Goo;Kim, Jae-Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.26 no.1
    • /
    • pp.27-32
    • /
    • 2022
  • Purpose When performing a whole-body bone scan, many patients are experiencing psychological difficulties due to the close distance to the detector. Recently, in the medical field, there is a report that using virtual reality (VR) equipment can give pain relief to pediatric patients with weak concentration or patients receiving severe treatment through a distraction method. Therefore, in this paper, VR equipment was used to provide psychological stability to patients during nuclear medicine tests, and it is intended to evaluate whether it can be used in clinical practice. Materials and Methods As VR equipment, ALLIP Z6 VR (ALLIP, Korea) was used and the experiment was conducted after connecting to a mobile phone. The subjects were 30 patients who underwent whole-body bone examination from September 1, 2021 to September 30, 2021. After intravenous injection of 99mTc-HDP, 3 to 6 hours later, VR equipment was put on and whole body images were obtained. After the test, a survey was conducted, and a Likert scale of 5 points was used for psychological anxiety and satisfaction with VR equipment. Hypothesis verification and reliability of the survey were analyzed using SPSS Statistics 25 (IBM, Corp., Armonk, NY, USA). Results Anxiety about the existing whole-body bone test was 3.03±1.53, whereas that of anxiety after wearing VR equipment was 2.0±1.21, indicating that anxiety decreased to 34%. When regression analysis of the effect of the patient's concentration on VR equipment on anxiety about the test, the B value was 0.750 (P<0.01) and the t value was 6.181 (P<0.01). decreased and showed an influence of 75%. In addition, overall satisfaction with VR equipment was 3.76±1.28, and the intention to reuse was 66%. The Cronbach α value of the reliability coefficient of the questionnaire was 0.901. Conclusion When using VR equipment, patients' attention was dispersed, anxiety was reduced, and psychological stability was found. In the future, as VR equipment technology develops, it is thought that if the equipment can be miniaturized and the resolution of VR content images is increased, it can be used in various clinical settings if it provides more realistic stability to the patient.

PSNR Evaluation of P Company DSA System between Server Display Monitor and Client Display Monitor (P사 DSA 시스템의 Server Display Monitor와 Client Display Monitor의 PSNR 평가)

  • Lee, Junhaeng
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.1
    • /
    • pp.43-49
    • /
    • 2014
  • PACS is needed medical imaging with large-capacity storage device. Slower transmission degrades the performance of the PACS. Thus, the image read by the reading of the long-term stored image without compromising the quality of the video, which does not affect future readings in the range will be compressed and stored. Compression and video storage, and video transport Noise generated during storage and transmission of medical images and the resulting loss of information that occurs when the monitor output from many problems. The study estimates server display monitor and client display monitor of philips DSA system, and suggests that the evaluation and improvement about PSNR, process from server display signal obtaining to client display monitor. P company DSA is used in the test. Two monitors that are $1280{\times}1024$ pixel monitor of P company and 1536x2048 pixel monitor of Wide are used displaying angiography picture. MARO-view is taken in PACS program, and Visual $C^{++}$ is taken as accomplishing PSNR measurement program. As a result of experiment, no change in No 1, 3 of PSNR appear that there is no error in telephotograph and display. In terms of compressibility, low compressibility has small change of definition, and there was not remarkable drawback of compressibility which has little change in definition.

Sampling-based Super Resolution U-net for Pattern Expression of Local Areas (국소부위 패턴 표현을 위한 샘플링 기반 초해상도 U-Net)

  • Lee, Kyo-Seok;Gal, Won-Mo;Lim, Myung-Jae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.185-191
    • /
    • 2022
  • In this study, we propose a novel super-resolution neural network based on U-Net, residual neural network, and sub-pixel convolution. To prevent the loss of detailed information due to the max pooling of U-Net, we propose down-sampling and connection using sub-pixel convolution. This uses all pixels in the filter, unlike the max pooling that creates a new feature map with only the max value in the filter. As a 2×2 size filter passes, it creates a feature map consisting only of pixels in the upper left, upper right, lower left, and lower right. This makes it half the size and quadruple the number of feature maps. And we propose two methods to reduce the computation. The first uses sub-pixel convolution, which has no computation, and has better performance, instead of up-convolution. The second uses a layer that adds two feature maps instead of the connection layer of the U-Net. Experiments with a banchmark dataset show better PSNR values on all scale and benchmark datasets except for set5 data on scale 2, and well represent local area patterns.

The new fusion interpolation for high resolution depth image (고품질 및 고해상도 깊이 영상 구현을 위한 새로운 결합 보간법)

  • Kim, Jihyun;Choi, Jinwook;Ryu, Seungchul;Kim, Donghyun;Sohn, Kwanghoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.40-43
    • /
    • 2012
  • 3차원 영상 기술은 방송, 영화, 게임, 의료, 국방 등 다양한 기존 산업들과 융합하며 새로운 패러다임을 형성하고 있으며, 고품질 및 고해상도의 3차원 영상 획득에 대한 필요성이 강조되고 있다. 이에 따라, 최근에는 3차원 입체 영상을 제작 하는 방법 중 하나인 2D-plus-Depth 구조에 대한 연구가 활발히 진행되고 있다. 2D-plus-Depth 구조는 Charge-Coupled Device(CCD) 센서 등을 이용한 일반 카메라와 깊이 카메라를 결합한 형태로써 이 구조로부터 얻은 깊이 영상의 해상도를 상향 변환하기 위해서 Joint Bilateral Upsampling(JBU)[1], 컬러 영상의 정보를 활용한 보간법[2] 등의 방법들이 사용된다. 하지만 이 방법들은 깊이 영상을 높은 배율로 상향 변환할 경우 텍스처가 복사되거나 흐림 및 블록화 현상이 발생하는 문제점이 있다. 본 논문에서는 2D-plus-Depth 구조에서 얻은 고해상도 컬러 영상에서 보간 정보를 구하고 이 정보를 저해상도의 깊이 영상에 적용하여 상향 변환된 가이드 깊이 영상을 제작한다. 이 가이드 깊이 영상을 Bilateral Filtering[8]을 이용함으로써 고품질의 고해상도 깊이 영상을 획득한다. 실험 결과 제안하는 방법으로 해상도를 상향 변환을 할 경우에 기존의 보간법들에 비해 깊이 영상의 특성을 잘 보존함을 확인할 수 있고, 가이드 깊이 영상에 필터링을 처리한 결과가 JBU의 결과보다 향상됨을 확인할 수 있다.

  • PDF

Evaluation of the Resolution Characteristics by Using ATS 535H Phantom for Ultrasound Medical Imaging (초음파 의료영상에서 ATS 535H 팬텀을 이용한 해상력 특성 평가)

  • Jung-Whan, Min;Hoi-Woun, Jeong;Hea-Kyung, Kang
    • Journal of radiological science and technology
    • /
    • v.46 no.1
    • /
    • pp.15-21
    • /
    • 2023
  • This study was purpose to assessment of the resolution characteristics by using ATS 535H Basic quality assurance (QA) phantom for ultrasound. The ultrasound equipment was used Logiq P6 (Ultrasound, GE Healthcare System, Chicago, IL, USA). And the ultrasound transducer were used Convex 4C (4~5.5 MHz), Linear 11L (10~13 MHz), Sector 3SP (3~5.5 MHz) probe. As for the noise power spectrum (NPS) comparison results by using ATS 535H Basic QA ultrasound phantom and Convex 4C, Linear 11L, Sector 3SP probe. The NPS value of the Convex 4C probe image was 0.0049, Linear 11L probe image was 0.0049, Sector 3SP probe image was 0.1422 when the frequency is 1.0 mm-1. The modulation transfer function (MTF) comparison results by using ATS 535H Basic QA ultrasound phantom and Linear 11L probe the MTF value of the 3 cm focus image was 0.7511 and 4 cm focus image was 0.9001 when the frequency is 1.0 mm-1. This study was presented characteristics of spatial resolution a quantitative evaluation methods by using ultrasound medical images for QA of ultrasound medical QA phantom. The quality control (QC) for equipment maintenance can be efficiently used in the clinic due to the quantitative evaluation of the NPS and MTF as the standard methods. It is meaningful in that it is applied mutatis mutandis and presented the results of physical resolution characteristics of the ultrasound medical image.

A Field Research on Multi-Language Sign System in Hospital at the Point of View in Convergent Study - Focused on General Hospital in Busan and South Gyeongsang Province - (융합적 관점에서 본 병원 사인시스템 다중언어 표기 현황 조사 - 부산 및 경남지역 의료기관을 중심으로 -)

  • Park, Han Na;Paik, Jin Kyung
    • Korea Science and Art Forum
    • /
    • v.37 no.1
    • /
    • pp.87-97
    • /
    • 2019
  • The study began in recent years with the aim of grasping the nation's medical status following the fast-growing trend of international medical tourism and attracting foreign patients, among other things, Busan, which ranks second in attracting foreign patients after the nation's capital, Seoul, has been highly active in the past eight years, with foreign patients rising by about 426 percent, and Russian patients entering the sea. In addition, Gimhae and Changwon, the Busan-based Gyeongsangnam-do region, ranked first and second in number of foreign residents, and are inhabited by a variety of foreign workers. Medical institutions, such as hospitals, should be able to find directions within hospitals. It is also a space where information in various languages, including Korean, English, Chinese, or Russian, must be delivered in a single medium. Based on this research, the purpose of this research is to provide converged information that helps foreigners who are not familiar with Korean language easily understand the proposed recognition system when visiting hospitals. Therefore, this paper is applied to a multi-language survey of six medical institutions (A, B, C, D, E, F) at the university hospital in Busan, and 10 medical institutions (R, J) in Gimhae, South Gyeongsang Province with high foreign residents. Research results and contents are as follows. First, the results of analyzing the design of the sinusoidal system show that the font uses colorless Gothic fonts, arrows, and pictograms to introduce the design of a typical hospital sign system. Second, the results of the multi-lingual situation were found to have only two languages in the system, such as Korean and English, and to have four languages, including Korean, English, Chinese, and Russian, according to their geographical location. However, it was judged that most medical institutions currently have only two languages (Korean, English) that may cause some discomfort in terms of language for foreign patients in non-English speaking countries. Based on these findings, it is necessary to propose designs that are considered by Koreans as well as foreign users in the use of multilingual hospital sign systems.

Image Quality Evaluation of Medical Image Enhancement Parameters in the Digital Radiography System (디지털 방사선시스템에서 영상증강 파라미터의 영상특성 평가)

  • Kim, Chang-Soo;Kang, Se-Sik;Ko, Seong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.329-335
    • /
    • 2010
  • Digital imaging detectors can use a variety of detection materials to convert X-ray radiation either to light or directly to electron charge. Many detectors such as amorphous silicon flat panels, CCDs, and CMOS photodiode arrays incorporate a scintillator screen to convert x-ray to light. The digital radiography systems based on semiconductor detectors, commonly referred to as flat panel detectors, are gaining popularity in the clinical & hospital. The X-ray detectors are described between a-Silicon based indirect type and a-Selenium based direct type. The DRS of detectors is used to convert the x-ray to electron hole pairs. Image processing is described by specific image features: Latitude compression, Contrast enhancement, Edge enhancement, Look up table, Noise suppression. The image features are tuned independently. The final enhancement result is a combination of all image features. The parameters are altered by using specific image features in the different several hospitals. The image in a radiological report consists of two image evaluation processes: Clinical image parameters and MTF is a descriptor of the spatial resolution of a digital imaging system. We used the edge test phantom and exposure procedure described in the IEC 61267 to obtain an edge spread function from which the MTF is calculated. We can compare image in the processing parameters to change between original and processed image data. The angle of the edge with respect to the axes of detector was varied in order to determine the MTF as a function of direction. Each MTF is integrated within the spatial resolution interval of 1.35-11.70 cycles/mm at the 50% MTF point. Each image enhancement parameters consists of edge, frequency, contrast, LUT, noise, sensitometry curve, threshold level, windows. The digital device is also shown to have good uniformity of MTF and image parameters across its modality. The measurements reported here represent a comprehensive evaluation of digital radiography system designed for use in the DRS. The results indicate that the parameter enables very good image quality in the digital radiography. Of course, the quality of image from a parameter is determined by other digital devices in addition to the proper clinical image.