• Title/Summary/Keyword: 해빈침식

Search Result 115, Processing Time 0.035 seconds

An Qualitative Analysis on the Beach Deformation of the Sangju Beach with Field Observation (현장관측을 통한 상주해빈 단면변화의 정성적 해석)

  • 함계운;장대정
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.2
    • /
    • pp.75-82
    • /
    • 2004
  • The changes of sea bottom configuration, which may cause the coastal disasters, have been considered as social problems. It is obvious that the beach deformation is attributable to the sediment transport associated with erosion and acceration. The prediction method and countermeasures for them, however, are not on the level of satisfaction, which indicates that efforts should be made on developing them. In this study, it is found at the groin constructed in Sangju beach on e purpose of beach protection did the aversive function. The reason for this was judged that they accelerated the speed of erosion by increasing the velocity wave-induced current rather than brought storage effect of sediment. Authors found that the storage sediment estimation model by Sonu and Beek(1971) is a useful model at the Sangju beach with the use of topographical survey data from July, 1987 to March, 2003.

Detection and Analysis of Post-typhoon Three-dimensional Changes in Haeundae Beach Topography using RS and GIS Technology (RS.GIS 기법을 활용한 태풍 전후 해운대 해빈지형의 3차원 입체변화 탐지 및 분석)

  • Hong Hyun-Jung;Choi Chul-Uong;Yang Ji-Yeon;Kim Yeon-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.365-368
    • /
    • 2006
  • 국내 해빈지대의 경우, 인위적 개발과 기상학적 현상, 특히 태풍의 영향으로 다량의 모래가 유실되고 있다. 해안침식 종합대책 수립 및 사업실행에 있어 해안지형에 관한 정확한 자료 구축은 필히 요구된다. 그러나 현재까지, 연안에 관한 정확한 측량작업이 실행되지 않은 채, 모래 유실에 대한 문제 제기나 일시적 대책 마련에 급급하고 있다. 그러므로 본 연구에서는 연구지역을 해운대 해빈지역으로 선정하고, GPS 측량기법을 이용하여 해안지대의 정확한 공간자료를 구축하였으며, 태풍으로 인한 3차원 지형변화를 정밀하게 분석하였다. 연구결과, 태풍의 영향으로 호안벽 근처 해빈고도는 증가하였으나, 강풍과 북북동의 정온입사파로 $2320m^3$ 가량 해빈이 침식하였다. 특히 동측 해빈지대에서 침식현상이 뚜렷하게 발생하였다. RS, GPS, GIS 기법을 기반으로 해안지대의 정확한 공간DB 구축과 지형변화에 관한 정량적정성적 분석 작업은 국내 해안침식에 관한 체계적이며 효과적인 대책을 수립하는데 도움을 줄 수 있을 것으로 사료된다.

  • PDF

A Study on the Transport Mechanism of Tidal Beach Sediments I. Deukryang Bay, South Coast of Korea (조간대성 해빈 퇴적물의 이동양상에 관한 연구 I. 한국 남해안의 득량만)

  • Ryu, Sang-Ock;Kim, Joo-Young;Chang, Jin-Ho;Cho, Yeong-Gil;Shin, Sang-Eun;Eun, Go-Yo-Na
    • Journal of the Korean earth science society
    • /
    • v.27 no.2
    • /
    • pp.221-235
    • /
    • 2006
  • In order to understand the transport mechanism of tidal beach sediments in Deukryang Bay, south coast of Korea, beach profiles, surface sediments, sedimentation rates and hydrodynamic conditions have been investigated. The beach is composed of a steep beach face and gentle low-tide terrace, showing general morphologic characteristics of tide dominated beach. Central beach face of an indented coast becomes flattened in summer, but ridge and runnel system developed in other seasons makes the beach profile rather irregular. These seasonal variations of beach profiles and sedimentation rate indicate that beach sedimentation is mainly controlled by both tide and wave processes. Erosion is prevalent in winter when strong wind wave is dominant, while deposition is dominant in other seasons. However, central beach showed an apparent erosional phase in summer. This is caused by strong waves induced by southerly strong winds occurring ephemerally during the summer. On the other hand, sedimentation rates are -89.2 mm/yr on the central beach and 60.5 mm/yr and 38.2 mm/yr on the sides. This result suggests that sediments are eroded on the central beach and subsequently transported to the both sides. Therefore, the central part of Sumun beach, used as a beach bathing site, will be continuously eroded, if nearby dyke continues to prevent the sediment supply from sources.

Erosion and Recovery Processes in Haeundae Beach by the Invading Typhoon Chaba in 2016 (2016년 태풍 차바 내습 전후의 해운대 해빈의 침식과 회복 과정)

  • Lee, Young Yun;Chang, Tae Soo
    • Journal of the Korean earth science society
    • /
    • v.40 no.1
    • /
    • pp.37-45
    • /
    • 2019
  • In spite of continued nourishments, Haeundae Beach in Busan has been suffering from erosion, this being caused by the increased wave energy due to global warming and intermittent typhoon reported by previous works. In the meantime, the typhoon Chaba hit Basan in October 2016. In order to investigate the effects of the typhoon in beach erosion and how fast the beach recovered after the typhoon, repeated beach profiling using a VRS-GPS system was carried out, and the grain size analyses for surface sediments sampled on the beach were conducted. Immediately after the typhoon invasion, Haeundae beach was eroded by 1.4 m in average height. The mean high tide lines were retreated back by 12 m, and beach slope became gentler from $3.8^{\circ}$ to $1.7^{\circ}$. The mean grain sizes of surface sediments became coarser from $1.6{\Phi}$ to $1.2{\Phi}$ after two months, and the sorting well sorted. After two months of typhoon landfall, the mean high tide lines have recovered by 85%, and the beach topography almost recovered. This suggests that the impact of typhoons on Haeundae beach erosion is negligible, and the relaxation time is shorter than that of other beaches.

Seasonal Changes of Shorelines and Beaches on East Sea Coast, South Korea (동해안 해안선과 해빈의 계절적 변화)

  • Kim, Dae Sik;Lee, Gwang-Ryul
    • Journal of the Korean Geographical Society
    • /
    • v.50 no.2
    • /
    • pp.147-164
    • /
    • 2015
  • This study analyzed characteristics and tendencies of seasonal change on shoreline and beach with 8 beaches at East Sea coast by topographical survey for 2 years from March 2012 to February 2013. The shorelines of East Sea coast appeared that amount of seasonal change was bigger than amount of annual change. The seasonal change tendencies between Gangwon-do and Gyeongsangbuk-do coast areas existed some regional differences. To synthesize seasonal changes on 8 beaches of East Sea coast, shoreline advance and beach deposit showed clearly in summer and shoreline retreat and beach erosion showed clearly in autumn. This result is different from tendencies of seasonal change in many mid-latitude coast areas of the world, but generally corresponds with reference studies in west coast and east coast. The major factor of beach erosion showing mostly in summer is storm wave caused by typhoon. The beach erosion by storm wave also occurred in late winter. And it assumes that the beach deposit showing mostly in autumn is result of equilibrium processes of coast area against strong erosion in summer.

  • PDF

Numerical Analysis of Beach Erosion Due to Severe Storms (폭풍에 의해 발생하는 해빈침식에 대한 수치해석)

  • 조원철;표순보
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.1
    • /
    • pp.19-26
    • /
    • 2000
  • A numerical model is applied for predicting two-dimensional beach and dune erosion during severe storms. The model uses equation of sediment continuity and dynamic equation, governing the on-offshore sediment transport due to a disequilibrium of wave energy dissipation. And the model also uses sediment transport rate parameter K from dimensional analysis instead of that recommended by Kriebel. During a storm, a beach profile evolves to a form where the depth at the surf zone is related to the distance seaward of the waterline. In general, the erosion in the beach profile is found to be sensitive to equilibrium profile parameter, sediment transport rate parameter, storm surge level and breaking wave height.

  • PDF

The Change of Beach Sediment Composition and Geography by Typhoon (Naa Beach, East Sea) (태풍에 의한 해빈 퇴적물 조성 및 지형 변화(동해, 나아해빈))

  • Lee, Yeon-Gyu;Shin, Hyeon-Ok;Lee, Jeong-Sup;Park, Il-Heum;Choi, Jeong-Min
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.3
    • /
    • pp.122-133
    • /
    • 2005
  • The change of surface sediment composition, shoreline and transection of geography were studied to investigate the Typhoon(Maemi) effect in Naa Beach located in the south area of East sea. In the backshore the volume of gravel is do creased, and increased in the volume of sand. The erosion in the sediment occurred to 4 m in the thickness and effected to 10 m in depth. And the coastline retreated to 12 m after typhoon. During typhoon conditions, higher amplitude waves deepen the wave base, causing much of the lower beach face and the offshore. The upper beach face is extensively eroded during typhoon and sand sediment is redeposited.

  • PDF

Analysis of Erosion Characteristics for Environment-Friendly Remodeling of Revetment Structures in the West Coast Area of Korea (환경친화적 연안 호안구조물 리모델링을 위한 서해안 침식특성 분석)

  • Park, Jong-Ryul;Oh, Kuk-Ryul;Ha, Jong-Joo;Kim, Kee-Dong;Jeong, Sang-Man
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.2032-2037
    • /
    • 2010
  • 충청남도 서해안은 생태환경의 보고로서 갯벌, 사구, 해안습지 등 독특한 자연적 특성을 갖고 있는 지역이다. 그러나 다른 지역에 비해 대규모 간척 및 매립으로 인한 해양생태계 피해에 현저히 노출되어 있으며, 서해안 지역은 최근 산업화 및 관광권화가 진행되며 무분별하게 설치된 호안구조물은 그 기능을 상실하여 상당수가 설치전보다 오히려 서해안의 독특한 환경성과 관광성을 악화시키고 있어 서해안 특성을 고려한 대책이 요구된다. 본 연구에서는 서해안의 특성을 고려한 환경친화적 연안 호안구조물 리모델링을 위해 서해안의 침식특성에 대하여 분석하고자 한다. 분석 방법은 충청남도 서해안의 4개 시 군 29개 지점을 대상으로 1년여에 걸쳐 수행된 현장조사 결과를 바탕으로 서해안의 침식 현황을 파악하고, 기 조사된 서해안 지역의 침식에 대한 자료를 바탕으로 침식원인을 유형화하였다. 조사 분석결과 서해안의 대표적인 침식유형은 직립 급경사 호안구조물의 반사파로 인한 해빈침식(자갈화), 사구 토사포락, 직립 급경사 호안구조물 저면 세굴에 의한 호안구조물 붕괴, 방파제 설치에 의한 침식 등 대표적인 4가지 유형으로 분류할 수 있으며, 침식 유형별 발생지점 수는 총 29개 지점 중 각각 19개 지점, 13개 지점, 5개 지점, 4개 지점에서 나타났다. 이는 호안구조물이 미설치된 곳은 사구 토사포락에 의한 침식 발생빈도가 높았고, 반면에 호안구조물이 설치된 곳에서는 호안구조물의 기능 상실로 인한 해빈침식의 발생빈도가 높은 것으로 나타났다. 또한 조사지점으로 선정하였던 29개 모든 지점에서 토사유실로 인한 자갈화가 진행되어 서해안의 갯벌, 사구, 해안습지 등이 유실되고 있는 것으로 나타났으며, 이는 최근 기후변화에 따른 해수면 상승과 서해안 특성을 고려하지 않은 정형화된 직립 급경사 호안구조물의 역효과로 피해가 발생된 것으로 나타났다.

  • PDF

The Change of Hagdong Shingle Beach and its Causes -By Monitoring the Change of Beach Profiles- (거제도 학동 자갈해빈의 변화와 그 원인에 관한 연구 -해빈 단면의 모니터링을 통해-)

  • Son, Ill;Park, Kyeong
    • Journal of the Korean association of regional geographers
    • /
    • v.10 no.1
    • /
    • pp.177-191
    • /
    • 2004
  • Monitoring has been done for the shingle beach in Hagdong Beach in Geojesi, City during the seven month period. The shingle beach has been found to go through the cyclic change according to the tidal schedule. The typhoon Rusa in year 2002 affected whole beach face. Sea wall, constructed to protect the village along the beach, aggravates the situation, since it cut off the supply of shingle from the marine terrace, upon which village was built. Concrete walls along the streams also diminish the supply of shingles from the mountains. To protect the shingle beach and encourage the sustainable eco-tourism long-term monitoring on sediment budget is necessary.

  • PDF

Morphologic Response of Gravel Beach to Typhoon Invasion - A Case Study of Gamji Beach Taejongdae in Busan (태풍 내습 시 자갈 해빈의 지형반응 - 부산 태종대 감지 해빈의 사례)

  • Lee, Young Yun;Chang, Tae Soo
    • Journal of the Korean earth science society
    • /
    • v.41 no.1
    • /
    • pp.19-30
    • /
    • 2020
  • To understand the impact of typhoons on Gamji gravel beach Taejongdae in Busan, we carried out beach profiling using a VRS-GPS system and a Drone photogrammetry for the typhoons 'Kong-rey' invaded in October 2018 and 'Danas' in July 2019. In addition, grain sizes are analyzed to investigate the overall distribution pattern of gravels on the beach, and the beach topography is surveyed periodically to confirm the recovery rate of the beach. Grain-size analysis reveals that mean gravel sizes, in general, become finer from -6.2Φ to -5.4Φ towards the east in the seashore line direction. Variation in mean sizes is obviously observed in the cross-shore direction. Gravels in the swash zone are relatively fine about -4.5Φ in size and equant in shape, whereas the coarse and oblate gravels ranged from -5Φ to -6Φ are found in the berm. Gamji gravel beach particularly has two lines of berms: a lower berm situated facing beach and an upper berm about 10 m landward. After the typhoon Kong-rey passed by, about 1.4 m of severe erosion in upper berm occurred, and the berm eventually disappeared. On the backshore of the upper berm about 50 cm of erosion took place so that the elevation became lower. However, tangible erosion was not observed in the lower berm. When typhoon Danas hit, rated as mild storm, both upper and lower berm were eroded out. However, about 50 cm of deposition occurred only in the backshore. Only three days later, the new lower berm was formed, meaning that sedimentation rate must be high. This result indicates that Gamji gravel beach is recovered very fast from erosion caused by the typhoons when it is under the fair-weather condition even though beach morphology changes dramatically in a short period of time. Gravel beach is estimated to be or evaluated very resilient to typhoon erosion.