• 제목/요약/키워드: 해마

Search Result 376, Processing Time 0.023 seconds

New Four-herb Formula Ameliorates Memory Impairments via Neuroprotective Effects on Hippocampal Cells (한약재 4종 복합추출물의 해마신경세포 보호를 통한 기억력 개선)

  • Ahn, Sung Min;Choi, Young Whan;Shin, Hwa Kyoung;Choi, Byung Tae
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.475-483
    • /
    • 2016
  • The current study was conducted to evaluate beneficial effects of a new formula (CWC-9) using four traditional Oriental medicinal herbs, Cynanchum wilfordii, Rehmannia glutinosa, Polygala tenuifolia, and Acorus gramineus, on hippocampal cells and memory function. To examine the neuroprotective effects of a new four-herb extract, cell viability, cytotoxicity, and reactive oxygen species (ROS) assays were performed in HT22 cells and behavioral tests (Morris water maze and passive avoidance retention), Western blot, and immunohistochemistry were performed in a mouse model of focal cerebral ischemia. In HT22 hippocampal cells, pretreatment with CWC-9 resulted in significantly reduced glutamate-induced cell death with suppression of ROS accumulation caused by glutamate. In a mouse model of focal cerebral ischemia, we observed significant improvement of spatial and short-term memory function by treatment with CWC-9. Phosphorylated p38 mitogen-activated protein kinases (MAPK) in hippocampus of ischemic mice were decreased by treatment with CWC-9, but phosphorylated phosphatidylinositol-3 kinase (PI3K) and cAMP response element binding protein (CREB) were significantly enhanced. By immunohistochemical analysis, we confirmed higher expression of phosphorylation of CREB in the hippocampal neurons of CWC-9 treated mice. These results suggest that new multi-herb formula CWC-9 mainly exerted beneficial effects on cognitive function through regulation of neuro-protective signaling pathways associated with CREB.

Activation of the M1 Muscarinic Acetylcholine Receptor Induces GluA2 Internalization in the Hippocampus (쥐 해마에서 M1 무스카린 아세틸콜린 수용체의 활성에 의한 GluA2 세포내이입 연구)

  • Ryu, Keun Oh;Seok, Heon
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1103-1109
    • /
    • 2015
  • Cholinergic innervation of the hippocampus is known to be correlated with learning and memory. The cholinergic agonist carbachol (CCh) modulate synaptic plasticity and produced long-term synaptic depression (LTD) in the hippocampus. However, the exact mechanisms by which the cholinergic system modifies synaptic functions in the hippocampus have yet to be determined. This study introduces an acetylcholine receptor-mediated LTD that requires internalization of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors on the postsynaptic surface and their intracellular mechanism in the hippocampus. In the present study, we showed that the application of the cholinergic agonist CCh reduced the surface expression of GluA2 on synapses and that this reduction was prevented by the M1 muscarinic acetylcholine receptor antagonist pirenzepine in primary hippocampal neurons. The interaction between GluA2 and the glutamate receptor-interacting protein 1 (GRIP1) was disrupted in a hippocampal slice from a rat upon CCh simulation. Under the same conditions, the binding of GluA2 to adaptin-α, a protein involved in clathrin-mediated endocytosis, was enhanced. The current data suggest that the activation of LTD, mediated by the acetylcholine receptor, requires the internalization of the GluA2 subunits of AMPA receptors and that this may be controlled by the disruption of GRIP1 in the PDZ ligand domain of GluA2. Therefore, we can hypothesize that one mechanism underlying the LTD mediated by the M1 mAChR is the internalization of the GluA2 AMPAR subunits from the plasma membrane in the hippocampal cholinergic system.

ELECTROPHYSIOLOGICAL CHARACTERISTICS OF GABAERGIC INHIBITION IN THE HIPPOCAMPAL CA1 OF THE RAT IN VIVO (생체내 흰쥐 해마 CA1 세포에서 가바성 억제에 대한 전기생리학 특성)

  • Choi, Byung-Ju;Cho, Jin-Hwa;Kim, Young-Jin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.27 no.1
    • /
    • pp.7-14
    • /
    • 2000
  • Inhibitory cells are critically involved in shaping normal hippocampal function and are thought to be important elements in the development of hippocampal pathologies. The present study was carried out in hippocampal CA1 area in vivo to compare with hippocampal slice studies. Intracellular and extracellular recordings with or without bicuculline electrodes were obtained in the intact brain of anesthetized rats, and cells were intracellularty labelled with neurobiotin. Electrical stimulation of fimbria-fornix resulted in an initial short-latency population spike. In the presence of $10{\mu}M$ bicuculline, orthodromic stimulation resulted in bursts of population spikes. The amplitude of population spikes in the CA1 region increased with stimulus intensity, as did the number of population spikes when the field recording electrode contained $10{\mu}M$ bicuculline. We measured the level of excitability in the CA1 area, using a paired-pulse stimulus paradigm to evoke population spikes. Population spikes showed strong paired-pulse inhibition at short interstimulus intervals. Burst afterdischarges up to 400 ms were observed after paired-pulse stimulus. These result suggest that hippocampal CA1 inhibitory interneurons can affect the excitability of pyramidal neurons that can not be appreciated in conventional in vitro preparation.

  • PDF

Effects of Memory and Learning Training on Neurotropic Factor in the Hippocampus after Brain Injury in Rats (뇌손상 흰쥐에서 기억과 학습훈련이 해마의 신경 성장인자에 미치는 영향)

  • Heo, Myoung;Bang, Yoo-Soon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.2
    • /
    • pp.309-317
    • /
    • 2009
  • This study was to investigate the effects of restoring cognition function and neurotrophic factor in the hippocampus according to memory and learning training in rats affected by brain injury. Brain injury was induced in Sprague-Dawley rats(36 rats) through middle cerebral artery occlusion(MCAo). And then experiment groups were randomly divided into three groups; Group I: Brain injury induction(n=12), Group II: the application for treadmill training after brain injury induction(n=12), Group III: the application for memory and learning training after brain injury induction(n=12). Morris water maze acquisition test and retention test were performed to test cognitive function. And the histological examination was also observed through the immunohistochemistric response of BDNF(brain-derived neurotrophic factor) in the hippocampus. For Morris water maze acquisition test, there were significant interactions among the groups with the time(p<.001). The time to find the circular platform in Group III was more shortened than in Group I, II on the 9th, 10th, 11th and 12th day. For Morris water maze retention test, there were significant differences among the groups(p<.001). The time to dwell on quadrant circular platform in Group III on the 13th day was the longest compared with other groups. And as the result of observing the immunohistochemistric response of BDNF in the hippocampus CA1, the response of immunoreactive positive in Group III on the 7th day increased more than that of Group I, II. These results suggested that the memory and learning training in rats with brain injury has a more significant impact on restoring cognitive function via the changes of neurotropic factor expression and synaptic neuroplasticity.

Effects of Gastrodia elata Extracts on Scopolamine-induced Memory Impairment in Rats (천마 추출액이 Scopolamine으로 유발된 기억력 감퇴 흰쥐에 미치는 영향)

  • Kim, Jin-Ho;Choo, Han-Na;Park, Eun-Hye;Jeong, Jong-Kil;Kim, Kyeong-Ok;Kim, Jeong-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.4
    • /
    • pp.595-599
    • /
    • 2013
  • Alzheimer's disease is a progressive neurodegenerative disorder characterized by a gradual decline in memory associated with shrinkage of brain tissue, with a localized loss of neurons mainly in the hippocampus and basal forebrain. This study investigated the neuroprotective effect of Gastrodia elata aqueous extracts against scopolamine-induced neurotoxicity in the hippocampus of male Sprague-Dawley rats. The animals (n=25) were divided into five different groups with five animals per each group. The normal group (Nor) was administered with saline, while the control (Con) group was administered saline after scopolamine treatment. The experimental group (Exp) was administered Gastrodia elata aqueous extracts (200 mg/kg body weight) for 20 or 30 days after scopolamine treatment. From a light microscopy study, the nuclei of neurons in the hippocampus were more shrunken or condensed in the 20 or 30 day control groups compared to experimental groups. The densities of neurons from the CA1 and CA3 area of the hippocampus in the Exp increased compared with the Con. Amyloid ${\beta}$ protein, containing PAS-positive materials, was lower in the Exp compared with the Con. The present study demonstrates that Gastrodia elata aqueous extracts possess neuroprotective potential, thus validating its use in alleviating the toxic effects of scopolamine.

Fas/FasL expression in the hippocampus of neonatal rat brains follwing hypoxic-ischemic injury (저산소성 허혈성 손상을 받은 신생 흰쥐 뇌 해마에서 Fas와 FasL 단백 발현)

  • Chang, Young Pyo;Kim, Myeung Ju;Lee, Young Il;Im, Ik Je;Cho, Jae Ju;Kim, Jong Wan;Yeo, Sung Moon
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.2
    • /
    • pp.198-202
    • /
    • 2006
  • Purpose : Fas is a cell surface receptor that transduces apoptotic death signals. Interaction of extracelluar domain of Fas with Fas ligand(FasL) triggers the apoptotic process in many diseases. We investigated the expression of Fas and FasL in the hippocampus of 7-day-old newborn rat brains following hypoxia-ischemia injury. Methods : The 7-days-old newborn rats were exposed to 8 percent oxygen for two hours after the ligation of right common carotid arteries. The newborn rats were killed and their brains were removed at 12, 14 and 48 hours after hypoxic-ischemic injury. The expressions of Fas and FasL of the right hippocampus were observed by western blotting and immunofluorescent staining. Results : Fas and FasL were strongly expressed in the right hippocampus ipsilateral to the ligation of the common carotid artery by western blotting at 12 hours following hypoxic-ischemic injury, and then slowly decreased. The immunofluorescent expressions of Fas and FasL strongly increased in the CA1 area of the right hippocampus at 12 and 24 hours following hypoxic-ischemic injury. The immunofluorescent expression of Fas decreased at 48 hours, but the expression of FasL persisted strongly at 48 hours following hypoxic-ischemic injury. Conclusion : The interaction of Fas with FasL on the cell surface may be involved in neuronal injury following hypoxic-ischemic injury in the developing brain.

Effects of Yuldahansotang after kainate administration in the mouse hippocampus area (열다한소탕(熱多寒少湯)이 kainic acid에 의해 유발된 mouse의 해마체 손상에 미치는 영향)

  • Kim, Il-hwan;Kim, Kyung-yo
    • Journal of Sasang Constitutional Medicine
    • /
    • v.11 no.2
    • /
    • pp.283-299
    • /
    • 1999
  • 1. Purpose : Systemic injection of kainic acid in experimental animals induces the limbic seizure and structural damages in hippocampus and amygdala which resembles the changes in human temporal lobe epilepsy. The author performed this study to investigate the neuroprotective effects of Yuldahansotang, on the neurotoxicity induced by kainic acid in the hippocampus in rats. 2. Method : Kainic acid was administered intraperitoneally. And feeding with Yuldahansotang for 3 weeks after kainic acid administration. Seizure were induced in male mice (kainate 10-40 mg/kg i.p) and animals were sacrified at various time-points after injection. The experimental animals were sacrificed at 1, 2, 3day and 1, 3weeks while Yuldahansotang administrations. Seizure were graded using a behavioral scale developed in our laboratory. c-fos belong to immediate early genes(IEGs) known to have rapid and brief responses. And neuronal injury was assayed by examining DNA fragmentation using in situ nick translation histochemistry. 3. Results & Conclusion : Seizure severity paralled kainate dosage. At higher doses DNA fragmentation is seen mainly in hippocampus in area CA3, and variable in CA1, thalamus, amygdala within 24 h, is maximal within 72 h, and is large gene by 7 days after administration of kainate. And we can't see the expression of DNA fragmentation and c-fos in the mice what feeded by Yuldahansotang after 7 days from kainic acid administration. It is consequently suggested that Yuldahansotang may attenuate the kainic acid-induced neuronal degeneration and increase the immunoreactivity of hippocampus in mouse.

  • PDF

Effects of Exercise Preconditioning on the Expression of NGF, Synapsin I, and ChAT in the Hippocampus of Socially Isolated Rats (사회적으로 고립된 쥐의 해마에서 NGF와 Synapsin I, ChAT의 단백질 수준에 미치는 사전운동효과)

  • Hong, Young-Pyo;Kim, Hyun-Tae
    • Journal of Life Science
    • /
    • v.22 no.9
    • /
    • pp.1180-1186
    • /
    • 2012
  • The purpose of this study was to investigate the effect of exercise preconditioning (EPC) on nerve growth factor (NGF), synapsin I, and choline acetyltransferase (ChAT) in the hippocampus of rats subjected to social isolation (SI). We randomly assigned four groups of male Sprague-Dawley (SD) rats (n=32) to the following treatments: GC: group housing control; IC: isolation control; GE: group housing exercise; IE: isolation exercise (n=8 each group). The rats underwent EPC 5 days a week for 8 weeks, and the speed of the treadmill was gradually increased (grade $0^{\circ}C$). After EPC, they were immediately subjected to SI for 8 weeks. The results showed that the protein levels of NGF, synapsin I, and ChAT in the hippocampus were significantly decreased in the IC group (p<0.05) compared with the GC group. However, these protein levels were significantly higher in the IE group (p<0.05). These results show that EPC may buffer the decline of function in the hippocampus by ameliorating the reduction in NGF, synapsin I, and ChAT induced by SI.

Ginsenosides Rb1 and Rg1 Decrease Proliferation but Increase Neuronal Differentiation of Hippocampal Neural Progenitor Cells (진세노사이드 Rb1과 Rg1에 의한 해마 신경전구세포의 분화 증가)

  • Yoon, Young-Ju;Lee, Jun-Seok;Kim, Young-Sook;Yang, Byung-Hwan;Son, Hyeon
    • Development and Reproduction
    • /
    • v.10 no.3
    • /
    • pp.169-175
    • /
    • 2006
  • Ginseng is the best known and most popular herbal medicine used worldwide. In spite of reported beneficial effects of ginseng on the CNS, there is few scientific evidences established at the cellular level. Among more than 30 ginsenosides, Rb1 and Rg1, the active ingredients of ginseng, are regarded as the main compounds responsible for many pharmaceutical actions of ginseng. Daily treatment with Rb1 or Rg1 for 3 d significantly decreased the number of bromodeoxyuridine(BrdU)(+) cells in primary neural progenitor cells(NPCs) isolated from hippocampi at embryonic day 16.5(E16.5). In contrast, treatment with Rb1 or Rg1 greatly increased the number of microtubule associated protein(MAP2) (+) cells. In addition, the transcription factors, Ngn1 and Hes1, proneural members of the basic helix-loop-helix(bHLH) family, significantly increased in Rb1 or Rg1 treated-NPCs. Based on these results, we suggest for the first time that ginsenosides Rb1 and Rg1 decrease proliferation but promote neuronal differentiation of hippocampal NPCs.

  • PDF

Protective Effect of Marine Natural Products against UVB-induced Damages in Human Skin Fibroblast via Antioxidant Mechanism (자외선으로 유도된 섬유아세포 손상에 대한 해양소재 추출물의 항산화 보호효과)

  • Jang, Jung-Hee;Lee, Chan;Kim, Sang-Chan;Chung, Ji-Wook;Park, Chan-Ik
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.1
    • /
    • pp.79-87
    • /
    • 2010
  • Ultraviolet is the one of the main environmental factors promoting aging process via increased intracellular generation of reactive oxygen species (ROS) and decreased expression of endogenous antioxidant enzymes and molecules. Therefore, in this study, we tried to search for natural skin-protective antioxidant materials from marine origins (Porphyra Thalli, Laminariae japonicae thallus, Ostreae Concha, Sargassum Thallus, Undaria thallus, Haliotidis Concha, Codium thalli, Syngnathoides biaculeatus, Hippocampus, Stichopus Stichopus, Thalli, Hizikia fusiforme thalli) which exhibit free radical scavenging activity and protect against UVB-induced cytotoxicity and oxidative cell death. Free radical scavenging activity was shown in order of Undaria thallus. Sargassum Thallus, Laminariae japonicae thallus, Hippocampus, Haliotidis Concha, Ostreae Concha, Syngnathoides biacuJeatus. In another experiment, UVB-induced cytotoxicity and cell death were effectively suppressed by treatment of Sargassum Thallus, Haliotidis Concha, Codium thalli, or Hippocampus water extract. Furthermore, UVB-induced cell death was mediated by intracellular accumulation or ROS, which was significantly inhibited by treatment with aforementioned extracts. The protective effect of these marine natural products seemed to be mediated by increased expression of antioxidant enzymes such as catalase, superoxide dismutase, and heme oxygenase-1. These results suggest that Sargassum Thallus, Haliotidis Concha, Codium thalli, and Hippocampus may have preventive and protective potentials as new functional cosmetics against oxidative stress-mediated skin damages and aging with antioxidant properties.