Browse > Article
http://dx.doi.org/10.5352/JLS.2012.22.9.1180

Effects of Exercise Preconditioning on the Expression of NGF, Synapsin I, and ChAT in the Hippocampus of Socially Isolated Rats  

Hong, Young-Pyo (Department of Health and Exercise Science, Korea National Sport University)
Kim, Hyun-Tae (Department of Health and Exercise Science, Korea National Sport University)
Publication Information
Journal of Life Science / v.22, no.9, 2012 , pp. 1180-1186 More about this Journal
Abstract
The purpose of this study was to investigate the effect of exercise preconditioning (EPC) on nerve growth factor (NGF), synapsin I, and choline acetyltransferase (ChAT) in the hippocampus of rats subjected to social isolation (SI). We randomly assigned four groups of male Sprague-Dawley (SD) rats (n=32) to the following treatments: GC: group housing control; IC: isolation control; GE: group housing exercise; IE: isolation exercise (n=8 each group). The rats underwent EPC 5 days a week for 8 weeks, and the speed of the treadmill was gradually increased (grade $0^{\circ}C$). After EPC, they were immediately subjected to SI for 8 weeks. The results showed that the protein levels of NGF, synapsin I, and ChAT in the hippocampus were significantly decreased in the IC group (p<0.05) compared with the GC group. However, these protein levels were significantly higher in the IE group (p<0.05). These results show that EPC may buffer the decline of function in the hippocampus by ameliorating the reduction in NGF, synapsin I, and ChAT induced by SI.
Keywords
Social isolation; exercise preconditioning; nerve growth factor (NGF); choline acetyltransferase (ChAT); Synapsin I;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ang, E. T., Wong, P. T., Moochhala, S. and Ng, Y. K. 2003. Neuroprotection associated with running: Is it a result of increased endogenous neurotrophic factors? Neuroscience 118, 335-345.   DOI
2 Belarbi, K., Schindowski, K., Burnouf, S., Caillierez, R., Grosjean, M. E., Demeyer, D., Hamdane, M., Sergeant, N., Blum, D. and Buée, L. 2009. Early Tau pathology involving the septo-hippocampal pathway in a Tau transgenic model: relevance to Alzheimer's disease. Curr. Alzheimer. Res. 6, 152-157.   DOI
3 Belarbi, K., Burnouf, S., Fernandez-Gomez, F. J., Laurent, C., Lestavel, S., Figeac, M., Sultan, A., Troquier, L., Leboucher, A., Caillierez, R., Grosjean, M. E., Demeyer, D., Obriot, H., Brion, I., Barbot, B., Galas, M. C., Staels, B., Humez, S., Sergeant, N., Schraen-Maschke, S., Muhr-Tailleux, A., Hamdane, M., Buée, L. and Blum, D. 2011. Beneficial effects of exercise in a transgenic mouse model of Alzheimer's disease-like Tau pathology. Neurobiol. Dis. 43, 486-494.   DOI
4 Belarbi, K., Burnouf, S., Fernandez-Gomez, F. J., Desmercières, J., Troquier, L., Brouillette, J., Tsambou, L., Grosjean, M. E., Caillierez, R., Demeyer, D., Hamdane, M., Schindowski, K., Blum, D. and Buee, L. 2011. Loss of medial septum cholinergic neurons in THY-Tau22 mouse model: what links with tau pathology? Curr. Alzheimer. Res. 8, 633-638.   DOI
5 Bogen, I. L., Haug, K. H., Roberg, B., Fonnum, F. and Walaas, S. I. 2009. The importance of synapsin I and II for neurotransmitter levels and vesicular storage in cholinergic, glutamatergic and GABAergic nerve terminals. Neurochem. Int. 55, 13-21.   DOI
6 Caspi, A., Harrington, H., Moffitt, T. E., Milne, B. J. and Poulton, R. 2006. Socially isolated children 20 years later. Arch. Pediatr. Adolesc. Med. 160, 805-811.   DOI
7 Chae, C. H. and Kim, H. T. 2009. Forced, moderate- intensity treadmill exercise suppresses apoptosis by increasing the level of NGF and stimulating phosphatidylinositol 3- kinase signaling in the hippocampus of induced aging rats. Neurochem. Int. 55, 208-213.   DOI
8 Corradi, A., Zanardi, A., Giacomini, C., Onofri, F., Valtorta, F., Zoli, M. and Benfenati, F. 2008. Synapsin-I- and synapsin-II-null mice display an increased age-dependent cognitive impairment. J. Cell Sci. 121, 3042-3051.   DOI
9 Cotman, C. W. and Berchtold, N. C. 2002. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25, 295-301.   DOI   ScienceOn
10 Fabel, K. and Kempermann, G. 2008. Physical activity and the regulation of neurogenesis in the adult and aging brain. Neuromolecular Med. 10, 59-66.   DOI
11 Filipovic, D., Gavrilovic, L., Dronjak, S. and Radojcic, M. B. 2007. The effect of repeated physical exercise on hippocampus and brain cortex in stressed rats. Ann. NY Acad. Sci. 1096, 207-219.   DOI
12 Fone, K. C. and Porkess, M. V. 2008. Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. Neurosci. Biobehav. Rev. 32, 1087-1102.   DOI
13 Frielingsdorf, H., Simpson, D. R., Thal, L. J. and Pizzo, D. P. 2007. Nerve growth factor promotes survival of new neurons in the adult hippocampus. Neurobiol. Dis. 26, 47-55.   DOI
14 Grippo, A. J., Gerena, D., Huang, J., Kumar, N., Shah, M., Ughreja, R. and Carter, C. S. 2007. Social isolation induces behavioral and neuroendocrine disturbances relevant to depression in female and male prairie voles. Psychoneuroendocrinology 32, 966-980.   DOI
15 Hermes, G., Li, N., Duman, C. and Duman, R. 2010. Post-weaning chronic social isolation produces profound behavioral dysregulation with decreases in prefrontal cortex synaptic-associated protein expression in female rats. Physiol. Behav. 104, 354-359.
16 Ibi, D., Takuma, K., Koike, H., Mizoguchi, H., Tsuritani, K., Kuwahara, Y., Kamei, H., Nagai, T., Yoneda, Y., Nabeshima, T. and Yamada, K. 2008. Social isolation rearing-induced impairment of the hippocampal neurogenesis is associated with deficits in spatial memory and emotion-related behaviors in juvenile mice. J. Neurochem. 105, 921-932.   DOI
17 Lim, A. L., Taylor, D. A. and Malone, D. T. 2011. Isolation rearing in rats: Effect on expression of synaptic, myelin and GABA-related immunoreactivity and its utility for drug screening via the subchronic parenteral route. Brain Res. 1381, 52-65.   DOI
18 Kempermann, G., Fabel, K., Ehninger, D., Babu, H., Leal-Galicia, P., Garthe, A. and Wolf, S. A. 2010. Why and how physical activity promotes experience-induced brain plasticity. Front Neurosci. 4, 189.
19 Leasure, J. L. and Decker, L. 2009. Social isolation prevents exercise-induced proliferation of hippocampal progenitor cells in female rats. Hippocampus 19, 907-912.   DOI
20 Liebelt, B., Papapetrou, P., Ali, A., Guo, M., Ji, X., Peng, C., Rogers, R., Curry, A., Jimenez, D., and Ding, Y. 2010. Exercise preconditioning reduces neuronal apoptosis in stroke by up-regulating heat shock protein-70 (heat shock protein-72) and extracellular-signal-regulated-kinase 1/2. Neuroscience 166, 1091-1100.   DOI
21 Lu, L., Bao, G., Chen, H., Xia, P., Fan, X., Zhang, J., Pei, G. and Ma, L. 2003. Modification of hippocampal neurogenesis and neuroplasticity by social environments. Exp. Neurol. 183, 600-609.   DOI
22 McEwen, B. S. 1999. Stress and hippocampal plasticity. Annu. Rev. Neurosci. 22, 105-122.   DOI
23 Mitra, R., Sundlass, K., Parker, K. J., Schatzberg, A. F. and Lyons, D. M. 2006. Social stress-related behavior affects hippocampal cell proliferation in mice. Physiol. Behav. 89, 123-127.   DOI
24 Neeper, S. A., Gomez-Pinilla, F., Choi, J. and Cotman, C. W. 1996. Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res. 726, 49-56.   DOI   ScienceOn
25 Park, H. J., Han, S. M., Yoon, W. J., Kim, K. S. and Shim, I. 2009. The effects of puerariae flos on stress-induced deficits of learning and memory in ovariectomized female rats. Kor. J. Physiol. Pharmacol. 13, 85-89.   과학기술학회마을   DOI
26 Pizzo, D. P. and Thal, L. J. 2004. Intraparenchymal nerve growth factor improves behavioral deficits while minimizing the adverse effects of intracerebroventricular delivery. Neuroscience 123, 743-755.   DOI
27 Ploughman, M. 2008. Exercise is brain food: the effects of physical activity on cognitive function. Dev. Neurorehabil. 11, 236-240.   DOI
28 Rozanski, A., Blumenthal, J. A. and Kaplan, J. 1999. Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. Circulation 99, 2192-2217.   DOI
29 Scaccianoce, S., Bianco, P. D., Paolone, G., Caprioli, D., Modafferi, A. M. E., Nencini, P. and Badiani, A. 2006. Social isolation selectively reduces hippocampal brain-derived neurotrophic factor without altering plasma corticosterone. Behav. Brain Res. 168, 323-325.   DOI
30 Stranahan, A. M., Khalil, D. and Gould, E. 2006. Social isolation delays the positive effects of running on adult neurogenesis. Nat. Neurosci. 9, 526-533.   DOI   ScienceOn
31 Takei, Y., Harada, A., Takeda, S., Kobayashi, K., Terada, S., Noda, T., Takahashi, T. and Hirokawa, N. 1995. Synapsin I deficiency results in the structural change in the presynaptic terminals in the murine nervous system. J. Cell Biol. 131, 1789-1800.   DOI
32 van Praag, H. 2009. Exercise and the brain: something to chew on. Trends Neurosci. 32, 283-290.   DOI
33 Zhu, S. W., Pham, T. M., Aberg, E., Brené, S., Winblad, B., Mohammed, A. H. and Baumans, V. 2006. Neurotrophin levels and behaviour in BALB/c mice: Impact of intermittent exposure to individual housing and wheel running. Behav. Brain Res. 167, 1-8.   DOI
34 White, L. J. and Castellano, V. 2008. Exercise and brain health-implications for multiple sclerosis: Part 1-- neuronal growth factors. Sports Med. 38, 91-100.   DOI
35 Zhang, F., Wu, Y. and Jia, J. 2011. Exercise preconditioning and brain ischemic tolerance. Neuroscience 177, 170-176.   DOI