• Title/Summary/Keyword: 항염

Search Result 1,920, Processing Time 0.039 seconds

Analysis of Marker Components of Fermented Opuntia ficus-indica var. saboten Stem Extracts (유산균 발효에 의한 손바닥선인장 줄기추출물의 지표물질 함량 변화 분석)

  • Shin, Dong Won;Lee, Sang Ho;Lee, Soyeon;Han, Eun Hye
    • Analytical Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.219-224
    • /
    • 2018
  • The fruit and stem of Opuntia ficus-indica var. aboten (OFS), a native plant of Jeju Island, are considered a safe food source. Moreover, stem extracts have been previously reported to possess a variety of biological effects (e.g. anti-inflammatory and anti-oxidant, including the ability to partially ameliorate cognitive impairment), suggesting that this plant may have utility as a functional food. The present study investigated whether fermentation by lactic acid bacteria enhances the biological effects of OFS extracts. The acetylcholinesterase (AChE) inhibitory activity of fermented or non-fermented OFS extracts was evaluated, and the content of marker components dihydrokaempferol (DHK) and quercetin-3-methyl ether (3-MeQ) was analyzed using high-performance liquid chromatography. Fermented (relative to non-fermented) OFS extracts exhibited improved AChE inhibitory activity ($IC_{50}=28.35 mg/mL$), with AChE inhibitory activity resulting from fermentation by L. plantarum ($IC_{50}=12.56mg/mL$) exceeding that resulting from fermentation by L. fermentum ($IC_{50}=17.71mg/mL$). Furthermore, fermented (relative to non-fermented) OFS extracts exhibited a 16.7 % increase in DHK content, and 3-MeQ content of OFS extracts fermented by L. plantarum and L. fermentum increased by 28.6 % and 21.4 %, respectively. Therefore, OFS stem extract AChE inhibitory activity, as well as DHK and 3-MeQ content, was enhanced by fermentation with Lactobacillus spp. This suggests that fermented OFS extracts may contribute to prevention or improvement of cognitive impairment. These data are anticipated to be useful in the development of enhanced-efficacy OFS products.

Anti-proliferative Properties of p-Coumaric Acid in SNU-16 Gastric Cancer Cells (SNU-16 위암 세포주에서 p-coumaric acid의 세포성장 억제 효과)

  • Jang, Mi Gyeong;Ko, Hee Chul;Kim, Se-Jae
    • Journal of Life Science
    • /
    • v.29 no.7
    • /
    • pp.809-816
    • /
    • 2019
  • The ubiquitous plant metabolite p-coumaric acid (p-CA) has antioxidant and anti-inflammatory properties, but its anti-cancer activity has not been established in gastric cancer cell lines. In this study, we investigated the effects of p-CA on the proliferation and transcriptome profile of SNU16 gastric cancer cells. Treatment with p-CA induced apoptosis of the SNU-16 cells by regulating the expression of pro-apoptotic and anti-apoptotic proteins, such as Bcl-2, poly (ADP-ribose) polymerase (PARP), Bax, procaspase-3, and cleaved-caspase-3. The genes differentially expressed in response to p-CA treatment of the SNU-16 cells were identified by RNA sequencing analysis. Genes regulated by p-CA were involved mainly in the inflammatory response, apoptotic processes, cell cycle, and immune response. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the phosphatidylinositol-3-kinase-Akt and cancer signaling pathways were altered by p-CA. Protein-protein interaction (PPI) network analysis also revealed that p-CA treatment was correlated with differential expression of genes associated with the inflammatory response and cancer. Collectively, these results suggest that p-CA has potential utility in gastric cancer prevention.

Development of Sustainable Anti-aging Products Using Aquaponics Technology (아쿠아포닉스 기술을 이용한 친환경 항노화 제품 개발)

  • Kim, You Ah;Jeon, Tae Byeong;Jang, Wookju;Park, Byoung Jun;Kang, Hakhee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.3
    • /
    • pp.307-317
    • /
    • 2019
  • To develop sustainable new natural anti-aging ingredients from Korean native plants, we investigated the cultivation potential of Nymphoides indica using the eco-friendly aquaponics system, and tested the anti-aging effects from N. indica extracts. N. indica could be grown in aquaponics system using floating leaved deep water culture method, and propagated through rhizome propagation. It was confirmed that the nitrate ($80{\mu}g/mL$), potassium ($63.5{\mu}g/mL$) and water temperature ($25^{\circ}C$) greatly affected the cultivation of the N. indica. In addition, synergistic effects were found when two major components (3,7-di-O-methylquercetin-4'-O-${\beta}$-glucoside & sweroside) were present at more than about $5{\mu}g/mL$. The extract had a significant effect on the recovery of skin cells damaged by environmental pollutant such as $benzo[{\alpha}]pyrene$, ammonium nitrate, formaldehyde. It also suppressed $PGE_2$, $TNF-{\alpha}$ and COX-2, and inhibited the production of MMP-1. Taken together, the results suggested that the standardized extracts of N. indica cultivated in the aquaponics has considerable potential as a new cosmetics ingredient with an anti-aging effect.

Effects of Piperine on Insulin Resistance and Lipid Accumulation in Palmitate-treated HepG2 Cells (Palmitate처리된 인간 간세포주 HepG2 세포에서 piperine의 지질 축적과 인슐린 저항성 기전에 대한 연구)

  • Jung, Hee Jin;Bang, EunJin;Jeong, Seong Ho;Kim, Byeong Moo;Chung, Hae Young
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.964-971
    • /
    • 2019
  • Hepatic lipid accumulation and insulin resistance increases in patients with non-alcoholic fatty liver disease. Piperine is a major compound found in black pepper (Piper nigrum) and long pepper (P. longum). Piperine has been used in fine chemical for its anti-cancer, anti-obesity, anti-diabetic, anti-inflammatory and anti-oxidant properties. However, the signaling-based mechanism of piperine and its role as an inhibitor of lipogenesis and insulin resistance in human hepatocyte cells remains ill-defined. In the present study, we explored the effects of piperine on lipid accumulation and insulin resistance, and explored the potential underlying molecular mechanisms in palmitate-treated HepG2 cells. Piperine treatment resulted in a significant reduction of triglyceride content. Furthermore, piperine treatment decreased palmitate-treated intracellular lipid deposition by inhibiting the lipogenic target genes, sterol-regulatory-element-binding protein 1c (SREBP-1c) and fatty acid synthase (FAS); whereas the expression of carnitine palmitoyl transferase (CPT-1) and phosphorylation of acetyl coenzyme A carboxylase (ACC) gene involved in fatty acid oxidation was increased. Moreover, piperine also inhibited the phosphorylation of insulin receptor substrate (IRS)-1 (Ser307). Piperine treatment modulated palmitate-treated lipid accumulation and insulin resistance in HepG2 cells with concomitant reduction of lipogenic target genes, such as SREBP-1 and FAS, and induction of CPT-1-ACC and phosphorylation of IRS-1 (Tyr632)-Akt pathways. Therefore, piperine represents a promising treatment for the prevention of lipid accumulation and insulin resistance.

Anti-Inflammatory Effect of Ethanol Extract from the Seeds of Arctium Lappa L. in Vascular Endothelial Cells (혈관내피세포에서 우방자(牛蒡子) 에탄올 추출물의 항염증 효과)

  • Lee, Yun-Jung;Yoon, Jung-Joo;Kim, Hye-Yoom;Ahn, You-Mee;Hong, Mi-Hyeon;Son, Chan-Ok;Na, Se-Won;Lee, Ho-Sub;Kang, Dae-Gill
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.32 no.3
    • /
    • pp.20-31
    • /
    • 2019
  • Objectives: The seeds from Arctium lappa have been considered for its various pharmacological properties, which include anti-carcinogenic, anti-inflammatory, anti-diabetic, and anti-viral activities. Methods: In the present study, we investigated the anti-inflammatory effect of the ethanol extract from the seeds of Arctium lappa L (EAL) on cytokine-induced vascular inflammation in human umbilical vein endothelial cells (HUVEC). Results: Pretreatment with EAL significantly decreased tumor necrosis factor alpha ($TNF-{\alpha}$)-induced cell adhesion molecules expression such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial-selectin (E-selectin) in a dose-dependent manner. Cell adhesion assay showed that pretreatment with EAL suppressed HUVEC-monocyte adhesion by $TNF-{\alpha}$ over $1{\mu}g/ml$ concentration. We investigated the involvement of nuclear transcription factor kappa-B ($NF-{\kappa}B$) in $TNF-{\alpha}$-induced vascular inflammation. $NF-{\kappa}B$ p65 nuclear expression was induced by $TNF-{\alpha}$, however, pretreatment with EAL was attenuated that nuclear translocation. In cytoplasm, EAL was also attenuated $TNF-{\alpha}$-induced decrease of inhibitor of ${\kappa}B-{\alpha}$ ($I{\kappa}B-{\alpha}$) expression. Moreover, EAL significantly decreased $TNF-{\alpha}$-induced production of intracellular reactive oxygen species (ROS). Conclusions: Taken together, our findings suggest that seeds of Arctium lappa L could be a therapeutic herb for prevention of cardiovascular diseases throughout the inhibition of vascular endothelial inflammation.

Anti-oxidative and anti-inflammatory effects of Danpitang in RAW 264.7 cell (단피탕(丹皮湯) 추출물의 항산화 및 항염증 효과 연구)

  • Oh, Sol-La;Park, Hye-Su;Kim, Ee-Hwa;Kim, Yong-Min
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.32 no.3
    • /
    • pp.37-47
    • /
    • 2019
  • Objectives : The purpose of this study is to investigate the anti-oxidative and the anti-inflammatory effects of Danpitang(DPT) extract in RAW 264.7 macrophages. Methods : The macrophage cell line RAW 264.7 cells were used and MTT assay was performed to measure the cell viabilities at the various concentrations of DPT($50-400{\mu}g/m{\ell}$). Nitric oxide(NO) was measured in LPS-induced RAW 264.7 cells. Expressions of iNOS, COX-2, $TNF-{\alpha}$, $IL-1{\alpha}$, $IL-1{\beta}$ and IL-6 were also performed by real-time PCR. Protein expression of iNOS and COX-2 was confirmed by western blot. The anti-oxidant activities of DPT was measured by DPPH radical scavenging activity. Results : 1. There was no cytotoxicity in RAW 264.7 cells treated with DPT compared to the control. 2. DPT treated group significantly inhibited NO production compared to the LPS treated group. 3. DPT treated group significantly decreased mRNA expressions of iNOS, COX-2, $TNF-{\alpha}$, $IL-1{\alpha}$, $IL-1{\beta}$ and IL-6 compared to the LPS treated group. 4. To evaluate the safety of the products for the human body, Adverse events, SCORAD Index Assessment were conducted; There were no severe adverse events during this study. And SCORAD Index showed a statistically significant decrease in treatment group in baseline, 2 weeks and 4 weeks. Therefore, it is suggested that products, if used for certain period, should be safe for the human body. 5. DPT was found to have high DPPH free radical scavenging ability. Conclusions : According to the above results, DPT can be used as a therapy in various anti-inflammatory skin diseases.

The Effects of Heated Radish Extract on the Prevention of Ulcerative Colitis Inflammation (열처리된 무 추출물의 궤양성 대장염증 예방 효과에 미치는 영향)

  • Kim, Hyun Kyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.317-326
    • /
    • 2019
  • The present study aimed to investigate the comparative evaluation of pharmacological efficacy between sulfasalazine alone and combination with herbal medicine on dextran sodium sulfate (DSS)-induced UC in mice. Balb/c mice received 5% DSS in drinking water for 7 days to induce colitis. Animals were divided into five groups (n = 9): group I-normal group, group II-DSS control group, group III-DSS + sulfasalazine (30 mg/kg), group IV-DSS + sulfasalazine (60 mg/kg), group V-DSS + sulfasalazine (30 mg/kg) + Radish Extract mixture (30 mg /kg) (SRE). DSS-treated mice developed symptoms similar to those of human UC, such as severe bloody diarrhea and weight loss. SRE supplementation, as well as sulfasalazine, suppressed colonic length and mucosal inflammatory infiltration. In addition, SRE treatment significantly reduced the expression of pro-inflammatory signaling molecules through suppression both MAPK) and nuclear factor-kappa B (NF-${\kappa}B$) signaling pathways, and prevented the apoptosis of colon. Moreover, SRE administration significantly led to the up-regulation of anti-oxidant enzyme including SOD and Catalase. This is the first report that Radish extract mixture combined with sulfasalazine protects against experimental UC via the inhibition of both inflammation and apoptosis, very similar to the standard-of-care sulfasalazin.

A Study on the Protective Effect of Antioxidants on Damage Induced by Liver Ischemia/Repefusion in a Rat Model (모델 랫드에 간 허혈/재관류로 유발된 손상에 대한 항산화제의 보호 효과에 관한 연구)

  • Ahn, Yong Ho;Seok, Pu Reum;Oh, Su Jin;Choi, Jin Woo;Shin, Jae-Ho
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.3
    • /
    • pp.370-378
    • /
    • 2019
  • The hepatic ischemic model has recently been widely used for the epidemiological study of ischemic reperfusion injury. This study was carried out to investigate the protective effect of vanillin, which is known to have antioxidant and anti-inflammatory effects, against hepatic and renal injury using an ischemia-reperfusion rat model, and we also investigated the mechanism related to vanillins' protective effect. The test material was administered at a concentration of 100 mg/kg for 3 days, followed by ligation of the liver for 60 minutes to induce ischemia reperfusion. As control groups, there was a negative control, sham control and ischemia-reperfusion-only ischemia reperfusion control, and the controls groups were compared with the drug administration group. In the vanillin group, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were significantly inhibited compared with the AST and ALT activities of the ischemia-reperfusion group, and histopathological examination showed significant reduction of both inflammation and necrosis. The malondialdehyde (MDA) and superoxide dismutase (SOD) levels were significantly different from the ischemia-reperfusion group. In conclusion, vanillin showed a hepatocyte protective action by alleviating the cellular inflammation and cell necrosis caused by hepatic ischemia-reperfusion, and vanillin mitigated inflammatory changes in the kidney glomeruli and distal tubules. The protective effect is considered to be caused by vanillin's antioxidant function. Further studies such as on cell death and possibly vanillin's same effect on damaged tissue will be necessary for clinical applications such as organ transplantation.

Physiological Activities of Bioconversion Products Using Bacillus Subtillis KJ-3 and Their Mixtures (Bacillus Subtilis KJ-3를 이용한 생물전환물 및 그 혼합물의 생리활성)

  • Lee, Jin Young;Dong, Jaekyung;Chung, Yuseong;Kim, Mi-Ryung;Kang, Jae Seon
    • Journal of Life Science
    • /
    • v.29 no.10
    • /
    • pp.1086-1095
    • /
    • 2019
  • This research was performed to develop a new material consisting of a mixture of Red Allium cepa (RA) Cucurbita moschata duch (CM), and Angelica gigas Nakai (AG). RA and CM have low storage stability because of their high moisture content. Therefore, their major components were extracted and used for the research after a content analysis. In order to overcome these limitations, the quercetin from RA, ${\beta}-carotene$ from CM, and decursin/decursinol angelate (D/DA) from AG were separately extracted, and the biochemical activity of each extract and mixture was compared. RA was bioconverted by the Bacillus subtillis KJ-3 (BS3) after ethanol extraction. After bioconversion, the quercetin content of RA was increased by 128.9%. ${\beta}-carotene$ was detected in the CM ethanol extract and its content was very low concentrations at 0.2 mg/g. The AG ethanol extract (1 mg) contained 0.4146 mg and 0.3659 mg of D/DA, respectively. The purity of the D/DA was found to be about 78%. The flavonoid and polyphenol content of each extract and their mixtures (mixture 1 (RA:CM:AG = 5:2:3), mixture 2 (RA:CM: AG = 3:5:2), and mixture 3 (RA:CM:AG = 3:2:5)) were measured. In addition, the cell survival rate, anti-inflammatory activity, and antioxidant ability were also evaluated. In all the results, the antioxidant activity of mixture 3 was most effective. Therefore, these findings provide basic data for future food development using a 3:2:5 mixture of RA, CM, and AG.

Anti-inflammatory Effects of Aurantio-obtusin isolated from Cassia tora L. in RAW264.7 Cells (결명자로부터 분리된 Aurantio-obtusin의 항염증 활성)

  • Lee, Ki Ho;Jang, Ji Hun;Woo, Kyeong Wan;Nho, Jong Hyun;Jung, Ho Kyung;Cho, Hyun Woo;Yong, Ju Hyun;An, Byeongkwan
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.1
    • /
    • pp.11-17
    • /
    • 2019
  • Cassia tora L. have been used as a folk medicine in Korea. This study investigated anti-inflammatory effect of aurantio-obtusin isolated from C. tora. We isolated aurantio-obtusin from 50% ethanol extracts of C. tora L. We investigated the anti-inflammatory effects of aurantio-obtusin on the lipopolysaccharide (LPS)-stimulated inflammatory response in murine macrophage cell line (Raw 264.7). To investigate the cytotoxicity of aurantio-obtusin on RAW 264.7 cells, MTS assay was performed. RAW 264.7 cells were treated with aurantio-obtusin at different concentrations (12.5, 25, 50, $100{\mu}M$) for 30 h. The result showed that aurantio-obtusin had no cytotoxic effect in a concentration range of $12.5-100{\mu}M$. To determine the effect of aurantio-obtusin on LPS-induced NO production, the NO concentration measurement was performed. RAW 264.7 cells were treated with aurantio-obtusin at 12.5, 25, 50 and $100{\mu}M$ for 24 h, and the results showed that the NO production of aurantio-obtusin-treated cells compared to LPS alone treated group was significantly decreased in a dose-dependent manner. Pretreatment of aurantio-obtusin inhibited LPS-induced NO production in a dose-dependent manner. To find out inhibitory mechanisms of aurantio-obtusin on inflammatory mediators, we examined the $PGE_2$ pathways. As a result, $PGE_2$ were decreased in a dose-dependent manner by aurantio-obtusin. The release of interleukin-$1{\beta}$ (IL-$1{\beta}$) and IL-6 were also reduced. Moreover, aurantio-obtusin suppressed LPL-induced $I{\kappa}B-{\alpha}$ degradation. These results suggest that the down regulation of NO, $PGE_2$, IL-$1{\beta}$ and IL-6 expression by aurantio-obtusin are achieved by the downregulation of NF-${\kappa}B$ activity.