• Title/Summary/Keyword: 항법시스템 오차

Search Result 268, Processing Time 0.024 seconds

Correction Calculation based Pseudorange (의사거리 기반 보정정보 생성)

  • Choi, Jin-Kyu;Park, Sang-Hyun;Cho, Deuk-Jae;Suh, Sang-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.98-99
    • /
    • 2007
  • It is necessary to use satellite radio navigation system as well as satellite radio navigation augmentation system such as differential Global Positioning System to achieve the positioning accuracy and reliability requested by International Maritime Organization in port and coastal area. Especially, position accuracy of DGPS user is effected by accuracy of pseudorange correction broadcasted from DGPS reference station. This paper shows pseudorange correction calculation algorithm adopting a non-common error estimation filter in order to improve accuracy of pseudorange correction. Finally, this paper verifies that the pseudorange correction calculated by adopting a non-common error estimation filter satisfies performance specifications of RTCM.

  • PDF

Terrain Referenced Navigation Simulation using Area-based Matching Method and TERCOM (영역기반 정합 기법 및 TERCOM에 기반한 지형 참조 항법 시뮬레이션)

  • Lee, Bo-Mi;Kwon, Jay-Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.73-82
    • /
    • 2010
  • TERCOM(TERrain COntour Matching), which is the one of the Terrain Referenced Navigation and used in the cruise missile navigation system, is still under development. In this study, the TERCOM based on area-based matching algorithm and extended Kalman filter is analysed through simulation. In area-based matching, the mean square difference (MSD) and cross-correlation matching algorithms are applied. The simulation supposes that the barometric altimeter, radar altimeter and SRTM DTM loaded on board. Also, it navigates along the square track for 545 seconds with the velocity of 1000km per hour. The MSD and cross-correlation matching algorithms show the standard deviation of position error of 99.6m and 34.3m, respectively. The correlation matching algorithm is appeared to be less sensitive than the MSD algorithm to the topographic undulation and the position accuracy of the both algorithms is extremely depends on the terrain. Therefore, it is necessary to develop an algorithm that is more sensitive to less terrain undulation for reliable terrain referenced navigation. Furthermore, studies on the determination of proper matching window size in long-term flight and the determination of the best terrain database resolution needed by the flight velocity and area should be conducted.

Kalman Filter Design For Aided INS Considering Gyroscope Mixed Random Errors (자이로의 불규칙 혼합잡음을 고려한 보조항법시스템 칼만 필터 설계)

  • Seong, Sang-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.47-52
    • /
    • 2006
  • Using the equivalent ARMA model representation of the mixed random errors, we propose Klaman filter design methods for aided INS(Inertial Navigation System) which contains the gyroscope mixed random errors. At first step, considering the characteristic of indirect feedback Kalman filter used in the aided INS, we perform the time difference of equivalent ARMA model. Next, according to the order of the time differenced ARMA model, we achieve the state space conversion of that by two methods. If the order of AR part is greater than MA part, we use controllable or observable canonical form. Otherwise, we establish the state apace equation via the method that several step ahead predicts are included in the state variable, where we can derive high and low order models depending on the variable which is compensated from gyroscope output. At final step, we include the state space equation of gyroscope mixed random errors into aided INS Kalman filter model. Through the simulation, we show that both the high and low order filter models proposed give less navigation errors compared to the conventional filter which assume the mixed random errors as white noise.

Analysis of Comparisons of Estimations and Measurements of Loran Signal's Propagation Delay due to Irregular Terrain (Loran 신호의 지형에 의한 전파 지연 예측 및 실측 비교 분석)

  • Yu, Dong-Hui
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.2
    • /
    • pp.107-112
    • /
    • 2011
  • Several developed countries have been developing their own satellite navigation systems, such as Europe's Galileo, China's BEIDOU, and Japan's QZSS, to cope with clock errors and signal vulnerabilities of GPS. In addition, modernization of Loran, eLoran, for GPS backup has been conducted. In Korea, a dependent navigation system has been required and for GPS backup, the need for utilization of time synchronization infrastructure through the modernization of Loran has been raised. Loran signal uses 100Khz groundwave. A significant factor limiting the ranging accuracy of the Loran signal is the ASF arising from the fact that the groundwave signal is likely to propagate over paths of varying conductivity and topography. Thus, an ASF compensation method is very important for Loran and eLoran navigation. This paper introduces the propagation delay model and then compares and analyzes the estimations from the propagation delay model and measured ASFs.

Orbit Prediction using Almanac for GLONASS Satellite Visibility Analysis (GLONASS 위성 가시성 분석을 위한 알마낙 기반 궤도 예측)

  • Kim, Hye-In;Park, Kwan-Dong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.119-127
    • /
    • 2009
  • Even though there are next generation Global Navigation Systems in development, only GPS and GLONASS are currently available for satellite positioning. In this study, GLONASS orbits were predicted using Keplerian elements in almanac and the orbit equation. For accuracy validation, predicted orbits were compared with precise ephemeris. As a result, the 3-D maximum and RMS (Root Mean Square) errors were 155.4 km and 56.3 km for 7-day predictions. Also, the GLONASS satellite visibility predictions were compared with real observations, and they agree perfectly except for several epochs when the satellite signal was blocked nearby buildings.

An implementation of INS calibration technique using the velocity initialization (속도오차 초기화를 이용한 관성항법장치 교정기법의 구현)

  • 박정화;김천중;신용진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1679-1683
    • /
    • 1997
  • In this paper a linear Kalman filter for calibration of gimballed inertial navigation system(GINS) is designed and its performace is analyzed through the simulation with a real navigation data. Simulation results show that the proposed Kalman filter gives a good performance to calibrate the sensor errors.

  • PDF

차량용 센서융합 정밀 측위 기술

  • Song, Jeong-Hun;Seo, Dae-Hwa
    • Information and Communications Magazine
    • /
    • v.30 no.11
    • /
    • pp.43-50
    • /
    • 2013
  • 본고에서는 도심지역을 주행하고 있는 차량의 정확한 위치정보를 획득하기 위한 정밀 측위 시스템 기술과 개발현황을 소개한다. 그리고 위성항법 기반의 정밀 측위 시스템에서 발생하는 측위 오차를 줄이고 위성 신호의 음영지역에서도 차량의 정밀한 위치 결과를 얻기 위하여 차량용 센서를 융합하는 정밀 측위 기술과 개발현황을 알아본다.

Development of the Simulation Tool to Predict a Coverage of the R-Mode System (지상파 통합항법 서비스의 성능예측 시뮬레이션 툴 개발)

  • Son, Pyo-Woong;Han, Younghoon;Lee, Sangheon;Park, Sanghyun
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.429-436
    • /
    • 2019
  • The eLoran system is considered the best alternative because the vulnerability of satellite navigation systems cannot be resolved as perfect. Thus, South Korea is in the process of establishing a testbed of the eLoran system in the West Sea. To provide resilient navigation services to all waters, additional eLoran transmitters are required. However, it is difficult to establish eLoran transmitters because of various practical reasons. Instead, the positioning with NDGNSS/AIS source can expand the coverage and its algorithm with applying continuous waves is under development. Using the already operating NDGNSS reference station and the AIS base station, it is possible to operate the navigation system with higher accuracy than before. Thus, it is crucial to predict the performance when each system is integrated. In this paper, we have developed a simulation tool that can predict the performance of terrestrial integrated navigation system using the eLoran system, maritime NDGNSS station and the AIS station. The esitmated phase error of the received signal is calculated with the Cramer-Rao Lower Bound factoring the transmission power and the atmospheric noise according to the transmission frequency distributed by the ITU. Additionally, the simulation results are more accurate by estimating the annual mean atmospheric noise of the 300 kHz signal through the DGPS signal information collected from the maritime NDGNSS station. This approach can further increase the reliability of simulation results.

Preliminary Design of Monitoring and Control Subsystem for GNSS Ground Station (위성항법 지상국 감시제어시스템 예비설계)

  • Jeong, Seong-Kyun;Lee, Jae-Eun;Park, Han-Earl;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.227-238
    • /
    • 2008
  • GNSS (Global Navigation Satellite System) Ground Station monitors navigation satellite signal, analyzes navigation result, and uploads correction information to satellite. GNSS Ground Station is considered as a main object for constructing GNSS infra-structure and applied in various fields. ETRI (Electronics and Telecommunications Research Institute) is developing Monitoring and Control subsystem, which is subsystem of GNSS Ground Station. Monitoring and Control subsystem acquires GPS and Galileo satellite signal and provides signal monitoring data to GNSS control center. In this paper, the configurations of GNSS Ground Station and Monitoring and Control subsystem are introduced and the preliminary design of Monitoring and Control subsystem is performed. Monitoring and Control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation solution determination module, independent quality monitoring module, and system operation and maintenance module. The design process uses UML (Unified Modeling Language) method which is a standard for developing software and consists of use-case modeling, domain design, software structure design, and user interface structure design. The preliminary design of Monitoring and Control subsystem enhances operation capability of GNSS Ground Station and is used as basic material for detail design of Monitoring and Control subsystem.