• Title/Summary/Keyword: 항균 분석

Search Result 979, Processing Time 0.047 seconds

Functional Characteristics of Enterococcus faecium SA5 and Its Potential in Conversion of Ginsenoside Rb1 in Ginseng (Enterococcus faecium SA5의 기능적 특성과 인삼 ginsenoside Rb1의 전환)

  • Kim, Eun-Ah;Renchinkhand, Gereltuya;Urgamal, Magsal;Park, Young W.;Nam, Myoung Soo
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.172-179
    • /
    • 2017
  • The fermentation of Panax ginseng can yield many compounds from ginsenosides that have a wide variety of biological functions. Lactic acid bacteria (LAB) strains are capable of converting ginsenosides. The purposes of this study were to: (1) characterize Enterococcus faecium SA5, an isolated LAB from Mongolian mare milk, (2) identify the existence of extracellular ${\beta}$-glucosidase activity in the milk, and (3) ascertain if the ${\beta}$-glucosidase has the capacity of converting ginsenoside in Korean ginseng. The results revealed that E. faecium SA5 was acid-resistant, bile salt-resistant, and has antibiotic activities against 4 pathogenic microorganisms (Salmonella typhimurium KCTC 3216, Listeria monocytogenes KCTC 3710, Bacillus cereus KCTC 1012, Staphylococcus aureus KCTC 1621). In addition, E. faecium SA5 had tolerance against some antibiotics such as colistin, gentamycin and neomycin. It was also found that E. faecium SA5 possessed bile salt hydrolase activity, which could lower blood cholesterol level. When incubated in 10% (w/v) skim milk as a yogurt starter, E. faecium SA5 caused to decrease pH of the medium as well as increase in viable cell counts. Using TLC and HPLC analysis on the samples incubated in MRS broth, our study confirmed that E. faecium SA5 can produce ${\beta}$-glucosidase, which was capable of converting ginsenoside $Rb_1$ into new ginsenosides $Rg_3-s$ and $Rg_3-r$. It was concluded that E. faecium SA5 possessed a potential of probiotic activity, which could be applied to yogurt manufacture as well as ginsenoside conversion in ginseng.

Quality characteristics of Weissella confusa strain having gluten degradation activity from salted seafood (젓갈로부터 분리된 글루텐 분해능을 가지는 Weissella confusa 균주와 특성)

  • Yoon, Jong Young;Hwang, Kwontack
    • Food Science and Preservation
    • /
    • v.23 no.6
    • /
    • pp.883-889
    • /
    • 2016
  • A new lactic acid bacteria with gluten-degrading activity which was isolated from salted sea foods (traditional Korea fermented food), identified as Weissella confusa (99%) by use of API kit and 16S rRNA sequencing, and designated as W. confusa. When the W. confusa cultured for 48 hours at $30^{\circ}C$ in a MRS medium containing 1% gluten, 45% of gluten was founded to be degraded. W. confusa showed 85% of survival rate at pH 3, and 94% tolerance at 0.1% oxgall, which indicates that W. confusa would survive in stomach of human. Experiments on the thermostability was confirmed that it has a stability of 70% in $50^{\circ}C$. W. confusa inhibited the growth of some pathogen, except for S. aureus. Results in this study suggest that using W. confusa for fermentation of grain flour containing gluten would be desirable to prepare the gluten-free foods needed for those who suffer from celia disease and gluten allergy.

Double-culture Method Enhances the in Vitro Inhibition of Atopy-inducing Factors by Lactococcus lactis (이중배양법에 따른 Lactococcus lactis의 아토피 유발인자 억제 효과 증대)

  • Jo, Yu Ran;Kang, Sang Mo;Kim, Hyun Pyo
    • Journal of Life Science
    • /
    • v.25 no.7
    • /
    • pp.810-818
    • /
    • 2015
  • We analyzed whether lactic acid bacteria could control the expression of IL-4 and IL-13 in activated mast cells and whether these bacteria could inhibit the activity of transcription factors such as GATA-1, GATA-2, NF-AT1, NF-AT2, and NF-κB p65. We previously described a technique for identification of lactic acid bacteria with anti-atopy functionality by confirming increased expression of CD4+/CD25+/foxp3+ in T cells. We also confirmed that a double-culture method increased the antibacterial activity of these lactic acid bacteria against Staphylococcus aureus (S. aureus). In the present study, we characterized the effect of lactic acid bacteria cultured by this double-culture method on inhibition of allergic inflammatory reactions of RBL-2H3 mast cells, a cellular model of atopic dermatitis. The strongest anti-allergic effects of the lactic acid bacteria were seen in the following order: Lactococcus lactis broth cultured with medium containing Lactobacillus plantarum culture supernatant > Lc. lactis > Lc. lactis broth cultured with medium containing Lb. plantarum culture supernatant > Lb. plantarum. Thus, Lc. lactis cultured in medium containing Lb. plantarum culture supernatant had the strongest inhibitory effect on the differentiation of mast cells during allergic reactions, which may be mediated through the selective regulation of expression of relevant genes.

Isolation of Bacillus licheniformis Producing Antimicrobial Agents against Bacillus cereus and Its Properties (Bacillus cereus 증식 억제능을 가지는 Bacillus licheniformis SCK 121057의 분리 및 특징)

  • Kim, Yong-Sang;Yun, Suk-Hyun;Jeong, Do-Yeon;Hahn, Kum-Su;Uhm, Tai-Boong
    • Korean Journal of Microbiology
    • /
    • v.46 no.3
    • /
    • pp.270-277
    • /
    • 2010
  • In order to manufacture Bacillus cereus-free fermented soybean products, an antimicrobial agentproducing isolate against B. cereus was obtained from 150 traditionally fermented soybean products. The morphological and biochemical tests and the phylogenetic relationship among 16S rRNA gene sequences indicated that the isolate named as the strain SCK 121057 was most closely related to Bacillus licheniformis. The B. licheniformis isolate began to produce the antimicrobial agent after 48 h of incubation. The agent was nonproteinaceous and insensitive to heat, long term storage and protease K. Electron microscopic observation indicated that the agent attacked the membrane of B. cereus, leaving the ghost cell. The isolate inhibited growth of B. subtilis, Lactobacillus brevis and various types of pathogenic strains including Escherichia coli, E. faecalis, Micrococcus luteus, Staphylococcus aureus, Aspergillus flavus, A. ochraceus, and A. parasiticus as well as B. cereus. After coinoculation of B. licheniformis SCK 121057 and B. cereus in the ratio (as the basis of CFU/g sample) of 10 to 1 on the surface of cooked soybeans, cell numbers of B. cereus had been dramatically reduced after 31 days of incubation compared to those of single inoculation of B. cereus.

A Study on Aronia czarna Bioconversion of Metabolic Compounds by Salted Fish Host Fermenting Bacteria and Its Enhancement During Fermentation (아로니아 기능성 증대를 위한 전통 젓갈 유래 유용발효미생물 활용 생물전환 방안 연구)

  • Lim, Jeong-Muk;Choi, Ui-Lim;Moon, Kwang-Hyun;Kim, Dae-Geun;Ok, Jeong-Kyung;Lee, Jeong-Ho;Oh, Byung-Taek
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.69-69
    • /
    • 2018
  • 아로니아(Aronia czarna)는 anthocyanin, polyphenol, flavonoid, cathechine, chlorogenic acid와 같은 생리활성물질이 풍부하게 존재하며 항산화, 항암, 항균, 피부건강개선, 노화방지 등 다양한 생리활성에 대한 효능이 있는 것으로 알려져 있어 건강 및 기능성식품, 화장품 등의 원료 소재로 각광받고 있다. 생물전환(Bioconversion)은 미생물 또는 효소의 생물학적 촉매 반응을 활용하여 기존 소재의 성분을 변환시키는 기술이다, 최근 생물전환을 활용한 천연소재의 생리활성 물질 기능성, 생체이용률, 안전성을 증대시키기 위한 방안으로 많은 연구가 진행되고 있으며 식품, 의약품, 화장품 등 다양한 분야에서 활성화 되고 있다. 본 연구는 젓갈로부터 분리한 균주를 유전학적 특성을 확인하기 위하여 16S rDNA 염기서열을 분석한 뒤 그중 유산균을 발효공정에 활용하였다. 전북 순창에서 수확된 아로니아 분말과 발효공정을 수행하였으며 아로니아 최적 추출조건 선정, 발효공정 전 후 추출물의 기능성 평가를 진행하기 위하여 DPPH radical scavenging activity, Total polyphenol 함량을 확인하여 항산화 효능 및 유효성분 함량을 평가하였다. 또한 대식세포인 Raw 264.7을 사용하여 MTT assay, Nitric oxide (NO) 생성 억제 효능을 확인하여 세포독성 및 항염증 활성을 평가하였다. 실험결과, 젓갈류 발효물로부터 16종의 다양한 균주를 확보하였으며, 그중 L. rhamnosus, L. plantarum, P. pentosaceus 균을 발효 공정에 활용하여 유용 균주를 선정 결과 P. pentosaceus 종 유산균 처리군에서 무처리군 대비 DPPH radical 소거능 및 polyphenol 함량이 증가됨을 확인하였다. 발효공정 후 항산화 활성은 무처리군 대비 약 119%, polyphenol의 함량은 무처리군 대비 약 119%로 증가됨을 확인되었다. 또한 Raw 264.7 세포실험 결과 발효공정 후 독성활성이 감소되는 경향을 확인되었으며, 항염증 활성이 월등히 증가됨을 확인하였다.

  • PDF

A Literature Review on Nano-Modified Implant Surfaces (나노구조 표면에 관한 문헌고찰)

  • Park, Go-Woon;Cha, Min-Sang;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.2
    • /
    • pp.141-151
    • /
    • 2013
  • The nano-surface modification techniques could be classified; internal modifications which enhance surface roughness and porosity in nano level and external modifications as nano particle coating. Nano-modified implant surface has various morphograpies such as nanotube, nanopit, nanonodule and polymorphic structures. Creating surface depends upon preparation method and material, however, there is no standard preparation technique not yet. The nano-modified surfacet is electrochemically stable comparing with the surface modified in micron level. Nano-modified surface has little cytotoxicity, stimulates osteoblast proliferation and differentiation. Moreover, it decreases soft tissue intervention by interrupting the proliferation of fibroblast. Nanostructure has similar size and shape with cells and proteins, consequently leads to good biocompatibility and enhanced osseointegration. However, the actual effect in vivo is limited, due to the distance of effect. Even if nano-modified surface has antibiotic property due to photocatalysis, short duration time makes clinical application questionable. Further investigations should focus on the optimal nano-modified surface, which has many potentials.

Determination of Optimal Electrotransformation Conditions for Various Lactobacillus spp. (다양한 Lactobacillus 균주에 대한 electrotransformation 최적 조건 탐색)

  • Lee, Yoo-Won;Im, Sung-Hoon;Xin, Chun-Feng;So, Jae-Seong
    • KSBB Journal
    • /
    • v.24 no.2
    • /
    • pp.182-188
    • /
    • 2009
  • Lactobacillus spp., primary members of probiotics, have significant benefits for health and well-being of human. In this study Lactobacillus strains representing six species (L. paracasei KLB58, L. fermentum MS79 and KLB282, L. plantarum KLB213, L. gasseri KLB238, and L. reuteri KLB270) isolated from Korean adults were electrotransformed with plasmid pNCKH104. To determine optimal electrotransformation conditions, various conditions including cell wall weakening agent, electroporation buffer, electric field strength and time constant were tested for each strain. Overall, high transformation efficiency of approximately 2.5 ${\times}$ $10^3$ ${\sim}$ 5.5 ${\times}$ $10^4$ CFU/${\mu}g$ DNA was obtained where conditions of 0.5 M sucrose electroporation buffer, 1.8 kV pulse voltage and 5 ms time constant were applied. The common conditions developed in this study will make transformation of various Lactobacillus spp. easier than previous procedures.

Effect of $\gamma$-Irradiation of Volatile Organic Compounds of Houttuynia cordata Thunb. (방사선 조사에 의한 어성초의 휘발성 유기성분 변화)

  • Ryu, Keun-Young;Shim, Sung-Lye;Jung, Min-Seok;Jun, Sam-Nyeo;Jo, Cheor-Un;Song, Hyun-Pa;Kim, Kyong-Su;Kim, Youn-Soon
    • Food Science and Preservation
    • /
    • v.15 no.3
    • /
    • pp.411-420
    • /
    • 2008
  • This study was performed to examine the effect of $\gamma$-irradiation on the volatile organic compounds in Houttuynia cordata Thunb.(H. cordata). 1be volatile compounds of non-irradiated and 10 kGy $\gamma$-irradiated H. cordata were isolated using SDE apparatus and analyzed by GC/MS. For each treatment the number of volatile compounds were detected at 83 and 85, respectively, 1be predominant functional groups of volatile organic compounds from H. cordata were identified as alcohols and ketones. H. cordata was mainly composed of hexahydrofarnesyl acetone (12.81 %), phytol, decanoic acid, dodecanoic acid, octadecanol, caryophyllene oxide, 2-undecanone and menthol. Houttuynum which is characteristic compound of H. cordata was found in all samples and there was no significant difference with irradiation doses. Consequently, $\gamma$-irradiation of H. cordata would be an effective process for sanitation and to increase extraction efficiency.

Chemical Components and Physiological Activities of Bamboo (Phyllostachys bambusoides Starf) Extracts Prepared with Different Methods (추출방법에 따른 대나무(왕대) 추출물의 화학성분 및 생리활성)

  • Ju, In-Ok;Jung, Gi-Tai;Ryu, Jeong;Choi, Joung-Sik;Choi, Yeong-Geun
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.542-548
    • /
    • 2005
  • Chemical components and physiological activities Bamboo (Phyllostachys bambusoides Starf) extracts obtained by burning, dry heating or extracting with water or 70% ethanol and were investigated. Contents of soluble solid and total phenolic compounds were highest in the ethanol extract. Contents of polyphenols such as catechin, chlorogenic acid, caffeic acid, 3-hydroxy benzoic acid and ferulic acid were determined. Free sugars consisted of galactose, glucose, fructose, and sucrose. Organic acids including citric, tartaric, malic, succinic, and acetic acid were present in the bamboo extracts. Antioxidant activities of dry heat and ethanol extracts were higher than those of BHA or ${\delta}-tocopherol$. Nitrite- scavenging effect of extracts ranged from 84.7 to 99.6% at pH 1.2 ana 3.0. Tyrosinase-inhibitory activity was higher in the water extract, and SOD-like and ACE-inhibitory activity were highest in tile dry kent extract. Antimicrobial activities of the bamboo extracts were strong against Bacillus subtilis, Escherichia coli O157, and Staphylococcus aureus.

Sanguinarine Increases Sensitivity of Human Gastric Adenocarcinoma Cells to TRAIL-mediated Apoptosis by Inducing DR5 Expression and ROS Generation (AGS 인체 위암세포에서 DR5의 발현 및 ROS 생성의 증가를 통한 sanguinarine과 TRAIL 혼합처리의 apoptosis 유도 활성 촉진)

  • Lee, Taek Ju;Im, Yong Gyun;Choi, Woo Young;Choi, Sung Hyun;Hwang, Won Deok;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.927-934
    • /
    • 2014
  • Sanguinarine, a benzophenanthridine alkaloid originally derived from the root of Sanguinaria canadensis, has been shown to possess antimicrobial, antioxidant, and anti-cancer properties. Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is known to induce apoptosis in cancer cells, but not most normal cells and has shown efficacy in a phase 2 clinical trial, development of resistance to TRAIL by tumor cells is a major roadblock. Our previous study indicated that treatment with TRAIL in combination with subtoxic concentrations of sanguinarine sensitized TRAIL-mediated apoptosis in TRAIL-resistant human gastric carcinoma AGS cells; however, the detailed mechanisms are not fully understood. In this study, we show that sanguinarine sensitizes AGS cells to TRAIL-mediated apoptosis as detected by MTT assay, agarose gel electrophoresis, chromatin condensation and flow cytometry analysis. Combined treatment with sanguinarine and TRAIL effectively induced expression of death receptor (DR) 5 but did not affect expression of DR4 and mitogen activated protein kinases signaling molecules. Moreover, the combined treatment with sanguinarine and TRAIL increased the generation of reactive oxygen species (ROS); however, N-acetylcysteine, ROS scavenger, significantly recovered growth inhibition induced by the combined treatment. Taken together, our results indicate that sanguinarine can potentiate TRAIL-mediated apoptosis through upregulation of DR5 expression and ROS generation.