• Title/Summary/Keyword: 항공삼각측량

Search Result 58, Processing Time 0.023 seconds

Aerial Triangulation with 3D Linear Features and Arc-Length Parameterization

  • Lee, Won-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.3
    • /
    • pp.115-120
    • /
    • 2009
  • Point-based methods with experienced human operators are processed well in traditional photogrammetric activities but not the autonomous environment of digital photogrammetry. To develop more robust and accurate techniques, higher level objects of straight linear features accommodating element other than points are adopted instead of points in aerial triangulation. Even though recent advanced algorithms provide accurate and reliable linear feature extraction, extracting linear features is more difficult than extracting a discrete set of points which can consist of any form of curves. Control points which are the initial input data and break points which are end points of piecewise curves are easily obtained with manual digitizing, edge operators or interest operators. Employing high level features increase the feasibility of geometric information and provide the analytical and suitable solution for the advanced computer technology.

  • PDF

GPS-Assisted Aerotriangulation (GPS를 이용한 항공삼각측량)

  • 김감래;김충평;윤종성
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.3
    • /
    • pp.283-292
    • /
    • 1999
  • Aerotriangulation for the large scale mapping(photo-scale l/5,000) was studied with the projection center determined by kinematic DGPS positioning. For the feasibility study, the accuracy and error was analyzed with the comparison between a projection center from the conventional model adjustment and the projection center determined by the kinematic DGPS positioning. Kinematic DGPS-supported Bundle adjustment was also performed. The accuracy of projection center, determined by L1 phase data observed within 30 km from base station, was stable, and the planimetric accuracy(RMS) is 13 cm and the vertical accuracy(RMS) is 15 cm with 4 ground control points, which satisfies the national standard of digital mapping. Thus, this study shows that GPS-assisted aerotriangulation can be used for economic digital mapping.

  • PDF

Comparison and Performance Validation of On-line Aerial Triangulation Algorithms for Real-time Image Georeferencing (실시간 영상 지오레퍼런싱을 위한 온라인 항공삼각측량 알고리즘의 비교 및 성능 검증)

  • Choi, Kyoung-Ah;Lee, Im-Pyeong
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.55-67
    • /
    • 2012
  • Real-time image georeferencing is required to generate spatial information rapidly from the image sequences acquired by multi-sensor systems. To complement the performance of position/attitude sensors and process in real-time, we should employ on-line aerial triangulation based on a sequential estimation algorithm. In this study, we thus attempt to derive an efficient on-line aerial triangulation algorithm for real-time georeferencing of image sequences. We implemented on-line aerial triangulation using the existing Given transformation update algorithm, and a new inverse normal matrix update algorithm based on observation classification, respectively. To compare the performance of two algorithms in terms of the accuracy and processing time, we applied these algorithms to simulated airborne multi-sensory data. The experimental results indicate that the inverse normal matrix update algorithm shows 40 % higher accuracy in the estimated ground point coordinates and eight times faster processing speed comparing to the Given transformation update algorithm. Therefore, the inverse normal matrix update algorithm is more appropriate for the real-time image georeferencing.

Test on Control Points of Aerotriangulation in ADS40 Images (ADS40영상 항공삼각측량의 기준점에 관한 연구)

  • Lee, Jun-Hyuk;Kim, Kyung-Jong;Lee, Young-Jin
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2009.04a
    • /
    • pp.295-296
    • /
    • 2009
  • 국내에 도입된 라인센서방식의 디지털항공카메라 ADS40영상을 활용하여 항공삼각측량을 수행하는데 있어 기준점의 수량 및 배치를 달리하여 성과를 분석한 결과는 모든 방법에서 국토지리정보원 항공사진측량작업내규에서 요구하는 정확도를 확보할 수 있었고, 기준점의 배치가 조밀하면 좀 더 양호한 성과를 확보할 수 있음을 확인했다.

  • PDF

GPS/INS Aerotriangulation Using CORS Observations (상시관측소 자료를 이용한 GPS/INS 항공삼각측량)

  • Yoon, Jong-Seong;Kim, Byung-Guk;Lee, Chang-No
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.71-78
    • /
    • 2009
  • In general, it is necessary to establish the dedicated GPS base station at the central point of the survey area in GPS/INS aerotriangulation. Although this base station is needed to achieve the required survey accuracy, there are some difficulties in practical operation. To tackle these difficulties and to achieve the effective GPS/INS aerotriangulation, the GPS data of CORS was interpolated and used in stead of those of the usual ground base station. Through this study, it was found that the interpolated CORS data was accurate enough to substitute dedicated GPS base station in GPS/INS aerotriangulation.

  • PDF

Automation of Aerial Triangulation by Auto Dectection of Pass Points (접합점 자동선정에 의한 항공삼각측량의 자동화)

  • Yeu, Bock-Mo;Kim, Won-Dae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.7 no.2 s.14
    • /
    • pp.47-56
    • /
    • 1999
  • In this study, tie point observation in aerial triangulation was automated by the image processing methods. The technique includes boundary extraction and We matching processes. The procedures were applied to extract points of Interest and to find their conjugate points in the other images. The image coordinates of the identified points were then used to compute their absolute coordinates. An algorithm was developed in this study for the automation of observation in aerial triangulation, which is a manual process of selecting a tie point and recording the image coordinate of the selected point. The developed algorithm automates this process through the application of a mathematical operator to extract points of interest from an arbitrary image. The root m square error of image coordinates of the developed algorithm is $6.8{\mu}m$, which is close to that of the present analytical method. In a manual environment, the accuracy of the result of a photogrammetric process is heavily dependant on the level of skill and experience of the human operator. No such problem exists in an automated system. Also, as a result of the automated system, the time spent in the observation process could be reduced by a factor of 61.2%, thereby reducing the overall cost.

  • PDF

Accuracy Analysis of Medium Format CCD Camera RCD105 (중형카메라 RCD105 정확도 분석)

  • Kim, Tae-Hoon;Won, Jae-Ho;Kim, Chung-Pyeong;So, Jae-Kyeong;Yun, Hee-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.4
    • /
    • pp.449-454
    • /
    • 2010
  • Lately, airborne digital camera and airborne laser scanner in field of airborne surveying are used to build geography information such as digital ortho photo map and DEM(Digital Elevation Model). In this study, 3D position accuracy is compared medium format CCD camera RCD105 with airborne digital camera DMC. For this, test area was decided for aerial photograph. And using 1/1,000 scale digital map, ground control points were selected for aerial triangulation and check points were selected for horizontal/vertical accuracy analysis using softcopy stereoplotter. Accuracy of RCD105 and DMC was estimated by result of aerial triangulation and result of check points measurement of using softcopy stereoplotter. In result of aerial triangulation, RMSE(Root Mean Square Error) X, Y, Z of RCD105 is 2.1, 2.2, 1.3 times larger than DMC. In result of check point measurement using softcopy stereoplotter, horizontal/ vertical RMSE of RCD105 is 2.5, 4.3 times larger than DMC. Even though accuracy of RCD105 is lower than DMC, it is maybe possible to make digital map and ortho photo using RCD105.

Accuracy Analysis of Aerial Triangulation Using Medium Format CCD Camera RCD105 (중형카메라의 항공삼각측량 정확도 분석)

  • Kang, Joon-Mook;Won, Jae-Ho;So, Jae-Kyeong
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.251-252
    • /
    • 2010
  • Lately, airborne digital camera and airborne laser scanner in field of airborne surveying is used to build geography information such as DEM generation and terrain analysis. In this study, 3D position accuracy is compared medium format CCD camera RCD105 with high resolution airborne digital camera DMC. For this, test area was decided for aerial photograph and ground control points was selected in 1/1,000 scale digital map. In Result, Root Mean Square Error(RMSE) was analyzed between RCD105 and DMC after aerial triangulation.

  • PDF

Accuracy Assessment of Aerial Triangulation of Network RTK UAV (네트워크 RTK 무인기의 항공삼각측량 정확도 평가)

  • Han, Soohee;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.663-670
    • /
    • 2020
  • In the present study, we assessed the accuracy of aerial triangulation using a UAV (Unmanned Aerial Vehicle) capable of network RTK (Real-Time Kinematic) survey in a disaster situation that may occur in a semi-urban area mixed with buildings. For a reliable survey of check points, they were installed on the roofs of buildings, and static GNSS (Global Navigation Satellite System) survey was conducted for more than four hours. For objective accuracy assessment, coded aerial targets were installed on the check points to be automatically recognized by software. At the instance of image acquisition, the 3D coordinates of the UAV camera were measured using VRS (Virtual Reference Station) method, as a kind of network RTK survey, and the 3-axial angles were achieved using IMU (Inertial Measurement Unit) and gimbal rotation measurement. As a result of estimation and update of the interior and exterior orientation parameters using Agisoft Metashape, the 3D RMSE (Root Mean Square Error) of aerial triangulation ranged from 0.153 m to 0.102 m according to the combination of the image overlap and the angle of the image acquisition. To get higher aerial triangulation accuracy, it was proved to be effective to incorporate oblique images, though it is common to increase the overlap of vertical images. Therefore, to conduct a UAV mapping in an urgent disaster site, it is necessary to acquire oblique images together rather than improving image overlap.

Utilization of Ground Control Points using LiDAR Intensity and DSM (LiDAR 반사강도와 DSM을 이용한 지상기준점 활용방안)

  • Lim, Sae-Bom;Kim, Jong-Mun;Shin, Sang-Cheol;Kwon, Chan-O
    • Spatial Information Research
    • /
    • v.18 no.5
    • /
    • pp.37-45
    • /
    • 2010
  • AT(Aerial Triangulation) is the essential procedure for creating orthophoto and transforming coordinates on the photographs into the real world coordinates utilizing GCPs (Ground Control Point) which is obtained by field survey and the external orientation factors from GPS/INS as a reference coordinates. In this procedure, all of the GCPs can be collected from field survey using GPS and Total Station, or obtained from digital maps. Collecting GCPs by field survey is accurate than GCPs from digital maps; however, lots of manpower should be put into the collecting procedure, and time and cost as well. On the other hand, in the case of obtaining GCPs from digital maps, it is very difficult to secure the required accuracy because almost things at each stage in the collecting procedure should rely on the subjective judgement of the performer. In this study, the results from three methods have been compared for the accuracy assessment in order to know if the results of each case is within the allowance error: for the perceivable objects such as road boarder, speed bumps, constructions etc., 1) GCPs selection utilizing the unique LiDAR intensity value reflected from such objects, 2) using LiDAR DSM and 3) GCPs from field survey. And also, AT and error analysis have been carried out w ith GCPs obtained by each case.