• Title/Summary/Keyword: 항공기탑재

Search Result 323, Processing Time 0.032 seconds

A Study on Technique of Development Test by an Aircraft Captive Flight Test in Weapon System (무기체계의 항공기 탑재비행시험을 통한 개발시험 기법 연구)

  • Yeom, Hyeong-Seop;Oh, Jong-Hoon;Sung, Duck-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.1010-1016
    • /
    • 2009
  • In this paper, we have described an aircraft captive flight test for the development test of weapon systems. We have conducted a captive flight test for the development of core onboard parts and sensors of airborne weapons and guided missiles. We have used KTX-1/XKO-1 aircraft as a platform for the captive flight test. In order to perform a captive flight test, we have made a captive test pod as a shape of external fuel tank in the XKO-1 and have modified XKO-1 aircraft for a system interface. We have taken a development test about all kinds of seekers, navigation & guidance systems, and core part of guided missile through the aircraft captive flight test.

항공기 탑재 전자기기의 EMI/C 기술 동향

  • Lee, Taek-Gyeong;Lee, Jae-Uk
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.1 s.61
    • /
    • pp.51-64
    • /
    • 2007
  • 항공 기술의 발달로 인해 항공기는 우리 일상에 가깝게 느껴지며, 다양한 기능을 가진 최첨단의 전자장비 등이 갖추어지게 되었다. 이러한 전자 장비의 내부 혹은 외부의 전파에 의한 전자파 간섭 현상을 일으키게 되며 심각한 경우 항공기기의 오동작을 유도한다. 따라서 항공기의 안전 운항에 필수적인 탑재 전자 장비의 전파 방해 방지를 위하여 항공기 탑재 전자기기의 전자파 장해 및 내성에 관한 국제 기술 규격의 동양 분석 및 불요 전자파 발생 인자의 파악과 대책이 필요하며 또한 전자파 장해 기준과 측정 방법의 표준화가 요구되는 현 시점에서, 본문에서는 항공기에 탑재되는 전자기기의 EMI/C 기술 동향에 대해서 언급하고자 한다.

Design of Air Vehicle Test Equipment for Inspecting On-board Equipment in UAV (무인항공기 탑재장비 점검을 위한 통합 점검 장치 설계)

  • Go, Eun-kyoung;Kwon, Sang-Eun;Song, Yong-Ha
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.108-114
    • /
    • 2021
  • AVTE(Air Vehicle Test Equipment) is a device to check status of on-board aircraft equipment before and after flight for performing successful UAV(Unmanned Aerial Vehicle) missions. This paper describes software design and test sequence of the AVTE for enabling easy-manual check by the operator and convenient automatic check of on-board electric equipment respectively. The proposed AVTE inspects BIT(Built-In Test) results of on-board LRUs(Line Replacement Units) including avionics and sensor sub-system devices. Also, it monitors all the LRU status and check the normality of aircraft equipment by means of setting specific values of the LRUs and confirming the expected test results. The AVTE prints the test results as a form of report to easily check the normal conditions of the aircraft equipment and operates automatically without operator interaction, thus being thought to effectively reduce workload of the operator.

Research on Algorithm and Operation Boundary for Fault Detection of Onboard GNSS Receiver (항공기 탑재용 GNSS 수신기 고장검출 알고리즘 및 운용범위 연구)

  • Nho, Hyung-Tae;Ahn, Jong-Sun;Sung, Sang-Kyung;Jun, Hyang-Sig;Yeom, Chan-Hong;Lee, Young-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.171-177
    • /
    • 2012
  • In this paper, we proposed a algorithm and an operation boundary for fault detection of a onboard GNSS receiver. After aircraft exchange corrections computed by an aircraft receiver, a faulty aircraft receiver is detected by checking consistency of correction. For this purpose, PRC residual is used as the test statistic for fault detection of the onboard GNSS receiver. And operation boundaries are set by using DGPS position error increase with respect to the distance from a reference station. If the fault detection is performed by using aircraft only in operation boundary, the more accurate fault detection can be possible.

A Study on the Analysis of Broadband Direction finding Antenna on Aircraft (항공기 탑재된 광대역 방향 탐지용 안테나 분석 연구)

  • Baek, Jong-Gyun;Ji, Sung-Hwan;Mun, Byeonggwi;Lee, Kyung-Won;Kim, Dong-Gyu;Lee, Wang-Yong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.89-95
    • /
    • 2018
  • In this paper, we analyze the antenna performance changes caused by the aircraft structure, diffraction and reflection, when the direction finding antenna used in the aircraft is mounted on the aircraft. Direction finding antenna is an antenna that receives radar threat signal in the direction finding device of aircraft electronic warfare system. Recently, because various antenna are mounted on an aircraft, various analyzes such as antenna performance and interference analysis are required. Therefore, the electromagnetic analysis was carried out by installing a broadband direction finding antenna with 50% bandwidth on simulated aircraft, and the direction finding performance was analyzed by comparing the single antenna performance with the performance mounted on the aircraft. The analyzed direction finding accuracy was $6.47^{\circ}$ RMS and predicted to be suitable as an antenna for aircraft direction finding antenna.

Analysis of Structural Stability and Optical Performance for Optical Equipment During In-flight Vibration (항공기 진동에 대한 광학 탑재 장비 구조 안정성 및 광학 성능 분석)

  • Jo, Mun Shin;Kim, Sang Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.897-904
    • /
    • 2017
  • Optical equipment consists of various components, and a detector is mounted and operated on aircraft, tanks, and warships for target detection and classification. The structural stability and optical performance of aeronautical optical equipment operated at several kilometers of altitude are degraded owing to vibration generated in the aircraft. It is necessary to verify the structural stability and optical performance requirements of the equipment in vibration environment conditions during the design phase. In this study, vibration environment conditions were analyzed using a test standard and the measurements of the vibration generated in aircraft. The conditions were classified as endurance and operating vibration conditions for structural stability and optical performance verification, respectively. The structural stability was verified according to natural frequency analysis, response analysis for the endurance vibration condition, and static analysis. The optical performance was verified by applying the vibration response analysis results to the optical design/analysis program.

단거리 공대공 유도무기의 발전추세(3)

  • Yun, Han-Su
    • Defense and Technology
    • /
    • no.4 s.218
    • /
    • pp.76-87
    • /
    • 1997
  • 단거리 공대공 유도무기는 일반적으로 자국의 영공 및 비행기지를 공격하는 적의 침입수단인 항공기를 격퇴하는 항공기탑재 유도무기이다. 또한 이 유도무기는 본질적으로 방어개념의 무기이며, 적을 공격하는 경우에는 항공기가 장거리를 운반하는 위험부담률을 안고 단행하는 수 밖에 없다

  • PDF

Placement Optimization of Airborne Line-Of-Sight Datalink Directional Antenna in UAV (무인항공기 탑재 가시선 데이터링크 방향성 안테나 위치 최적화)

  • Kim, Jihoon;Choi, Jaewon;Chung, Eulho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.18-24
    • /
    • 2014
  • In this paper, the optimum placement of airborne line-of-sight (LOS) datalink directional antenna to minimize the datalink loss within the operation range of unmanned aerial vehicle (UAV) is analyzed by using the electromagnetic (EM) simulation. In quick banking of UAV, the datalink loss is occurred due to the electromagnetic distortion and transmission loss by the fuselage blockage. In general, the banking angle of UAV is limited to prevent the datalink loss. However, in this case, there is the problem that the mission performance ability is largely limited by the banking radius increase. To solve this problem, the optimum placement to mount the airborne LOS datalink 1-axis directional antenna on both the top and bottom surfaces of fuselage is analyzed by using EM simulation. The 1-axis antenna with large vertical beamwidth is used because the banking angle of UAV is dependent on the vertical beamwidth of antenna. Also, there is the benefit to reduce largely the weight because the 1-axis antenna can be mounted instead of the 2-axis one.

Study on Practical Use of Air Vehicle Test Equipment(AVTE) for UAV Operation Support (무인항공기 운용 지원을 위한 비행체 점검장비 활용에 관한 연구)

  • Song, Yong-Ha;Go, Eun-kyoung;Kwon, Sang-Eun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.320-326
    • /
    • 2021
  • AVTE(Air Vehicle Test Equipment) is an equipment to inspect and check the status of on-board aircraft LRUs(Line Replacement Units) before and after flight for performing successful UAV(Unmanned Aerial Vehicle) missions. This paper suggests utilization of the AVTE as an operation support-equipment by implementing several critical functions for UAV-operation on the AVTE. The AVTE easily sets initialization(default) data and compensates for the installation and position errors of the LRUs which provide critical mission data and situation image with pilots without additional individual operation support-equipment. Major fault list and situation image data could be downloaded after flight using the AVTE in the event of UAV emergency situation or unusual occurrence on duty as well. We anticipate the suggested operational approach of the AVTE could dramatically reduce the cost and man power for design and manufacture of additional operation support equipment and effectively diminish workload of the operator.

The Study on Airworthiness Certification Process on Military Airborne Safety Critical Software based on DO-178 (DO-178 기반의 군용항공기 탑재 안전필수 소프트웨어 감항인증 방안에 대한 고찰)

  • Heo, Jin Gu;Kim, Min Sung;Kim, Man Tae;Moon, Yong Ho
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.62-68
    • /
    • 2019
  • The software installed on an aircraft is directly related to its safety. Therefore, it shall comply with the standards of the airworthiness certification to ensure safety of flight. Airborne software should be developed in accordance with the DO-178 (Software Consideration in Airborne Systems and Equipment Certification) to comply with the airworthiness certification criterion. However, the military airborne software has been developed in accordance with the DAPA weapons system software development and management manual. In this paper, we completed a questionnaire survey of software experts. We also suggest a military airborne software development/certification process based on DO-178.