• Title/Summary/Keyword: 합성 알고리즘

Search Result 1,057, Processing Time 0.025 seconds

Implementation of Multiview Stereoscopic 3D Display System using Volume Holographic Lenticular Sheet (VHLS 광학판 기반의 다시점 스테레오스코픽 3D 디스플레이 시스템의 구현)

  • 이상우;이맹호;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.716-725
    • /
    • 2004
  • In this paper, a new multiview stereoscopic 3D display system using a VHLS(volume holographic lenticular sheet) is suggested. The VHLS, which acts just like an optical direction modulator, can be implemented by recording the diffraction gratings corresponding each directional vector of the multiview stereoscopic images in the holographic recording material by using the angularly multiplexed recording property of the conventional volume hologram. Then, this fabricated VHLS is attached to the panel of a LCD spatial light modulator and used to diffract each of the multiview image loaded in a SLM to the corresponding spatial direction for making a 3D stereo view-zone. Accordingly, in this paper, the operational principle and characteristics of the VHLS are analyzed and an optimized 4-view VHLS is fabricated by using a commercial photopolymer. Then, a new VHLS-based 4-view stereoscopic 3D display system is implemented. Through some experimental results using a 4-view image synthesized with adaptive disparity estimation algorithm, it is suggested that implementation of a new VHLS-based multiview stereoscopic 3D display system can be possible.

Full-Search Block-Matching Motion Estimation Circuit with Hybrid Architecture for MPEG-4 Encoder (하이브리드 구조를 갖는 MPEG-4 인코더용 전역 탐색 블록 정합 움직임 추정 회로)

  • Shim, Jae-Oh;Lee, Seon-Young;Cho, Kyeong-Soon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.2
    • /
    • pp.85-92
    • /
    • 2009
  • This paper proposes a full-search block-matching motion estimation circuit with hybrid architecture combining systolic arrays and adder trees for an MPEG-4 encoder. The proposed circuit uses systolic arrays for motion estimation with a small number of clock cycles and adder trees to reduce required circuit resources. The interpolation circuit for 1/2 pixel motion estimation consists of six adders, four subtracters and ten registers. We improved the circuit performance by resource sharing and efficient scheduling techniques. We described the motion estimation circuit for integer and 1/2 pixels at RTL in Verilog HDL. The logic-level circuit synthesized by using 130nm standard cell library contains 218,257 gates and can process 94 D1($720{\times}480$) image frames per second.

Verification of Wavefront Inversion Scheme via Signal Subspace Comparison Between Physical and Synthesized Array Data in SAT Imaging (SAR Imaging에서 Physical Array와 합성 Array 신호의 Subspace 비교를 통한 Wavefront Inversion 기법 입증)

  • 최정희
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.4
    • /
    • pp.34-41
    • /
    • 1999
  • Unlike the traditional radar system, Synthetic Aperture Radar(SAR) system is capable of imaging a target scene to ceertain degree of cross-range resolution. And this resolution is mainly depends on the size of aperture synthesized. Thus, a good system model and inversion scheme should be developed to actually give effect of synthesizing aperture size, which in turn gives better cross range resolution of reconstructed target scene. Among several inversion schemes for SAR imaging, we used an inversion scheme called wavefront reconstruction which has no approximation in wave propagation analysis, and tried to verify whether the collected data with synthesized aperture actually give the same support as that with physical aperture in the same size. To do this, we performed a signal subspace comparison of two imaging models with physical and synthesized arrays, respectively. Theoretical comparisons and numerical analysis using Gram-Schmidt procedures have been performed. The results showed that the synthesized array data fully span the physical array data with the same system geometry. This result strongly supports the previously proposed inversion scheme valuable in high resolution radar imaging.

  • PDF

Analysis of a Target's Power-Spill Patterns Using Squint SAR Images (Squint SAR 영상 내 목표물 분산전력패턴 분석기법)

  • Hwang, Ji-Hwan;Kim, Duk-Jin;Lee, Seung-Chul;Han, Seung-Hoon;Cho, Jae-Hyoung;Moon, Hyoi
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.9
    • /
    • pp.722-730
    • /
    • 2018
  • This paper presents an analysis technique for estimating the properties of a target's power-spill patterns observed in reconstructed SAR images, which in turn depend on the setup squint angle of the FMCW signal-based SAR system. The target responses observed in the reconstructed SAR images were affected by the range-direction and azimuth-direction of a wave projected on the ground, and the obtained results were analyzed by applying three-dimensional squinted SAR geometry. Furthermore, the rotation patterns were verified through simulations based on the FMCW signal model and back-projection algorithm. This paper summarizes the obtained evaluation results as a function of SAR geometry and squint angle.

Study on Enhancements to Ultrasonic Data Imaging Using Full Matrix Capture Technique (Full Matrix Capture 기법을 통한 초음파신호 영상화 향상 연구)

  • Lee, Tae-Hun;Yoon, Byung-Sik;Lee, Jeong-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.299-306
    • /
    • 2015
  • A conventional phased array system can control an ultrasonic beam electronically by adjusting the excitation time delay of individual elements in a multi-element probe and produce an ultrasonic image. In Contrast, full matrix capture (FMC) is a data acquisition process that allows receiving ultrasonic signals from one single shot of the phased array transducer element through all the other elements and captures the complete dataset from every possible transmit-receive combination. This FMC data can be used to create the ultrasonic image in post processing. It is possible to produce not only images equivalent to conventional phased array image but also total focusing method (TFM) images with improved resolution and sharpness, which is virtually focused at any point in a region of interest. In this paper, the system that can perform FMC by using a conventional phased array instrument is developed, and a study was conducted on the imaging algorithms to reconstruct sector B-scan and TFM images from FMC dataset.

Robust Estimation of Fundamental Matrix Using Inlier Distribution (일치점 분포를 이용한 기본행렬 추정)

  • 서정각;조청운;홍현기
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.5
    • /
    • pp.357-364
    • /
    • 2003
  • The main difficulty in estimating the fundamental matrix stems from the unavoidable outliers inherent in the given correspondence matches. Several researches showed that the estimation results are much dependent on selecting the corresponding points. These represent that it is important to solve the problems due to errors on the point locations and mismatches. In this paper, our analysis shows that if the evenly distributed corresponding points are selected, we can estimate a more precise fundamental matrix. This paper presents novel approaches to estimate the fundamental matrix by considering the inlier distributions. In order to select evenly distributed points, we divide the entire image into the subregions, and then examine the number of the inliers in each subregion and the area of each region. The simulation results showed that our consideration of the inlier distribution can provide a more precise estimation of the fundamental matrix.

View Interpolation Algorithm for Continuously Changing Viewpoints in the Multi-panorama Based Navigatio (다중 파노라마 영상기반 네비게이션에서 연속적인 시점이동을 위한 장면보간 방법)

  • 김대현;최종수
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.141-148
    • /
    • 2003
  • This paper proposes a new algorithm that generates the smooth and realistic transition views from one viewpoint to another on the multi-panorama based navigation system. The proposed algorithm is composed of two steps. One is prewarping that aligns the viewing directions of two panoramic images, and the other is the bidirectional disparity morphing(BDM) that generates the intermediate scene from the aligned panoramic images. For prewarping, we compute the phase correlation between two images in order to obtain the information, such as translation, rotation, and scaling. Then we align the viewing directions of two original images using these information. Afterprewarping, we compute the block based disparity vector(DV) and smooth them using two occluding patterns. As we apply these DVs to the BDM, we can generate the elaborate intermediate scene. We make an experiment on the proposed algorithm with some real panoramic images and obtain good quality intermediate scenes.

An X-masking Scheme for Logic Built-In Self-Test Using a Phase-Shifting Network (위상천이 네트워크를 사용한 X-마스크 기법)

  • Song, Dong-Sup;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.2
    • /
    • pp.127-138
    • /
    • 2007
  • In this paper, we propose a new X-masking scheme for utilizing logic built-in self-test The new scheme exploits the phase-shifting network which is based on the shift-and-add property of maximum length pseudorandom binary sequences(m-sequences). The phase-shifting network generates mask-patterns to multiple scan chains by appropriately shifting the m-sequence of an LFSR. The number of shifts required to generate each scan chain mask pattern can be dynamically reconfigured during a test session. An iterative simulation procedure to synthesize the phase-shifting network is proposed. Because the number of candidates for phase-shifting that can generate a scan chain mask pattern are very large, the proposed X-masking scheme reduce the hardware overhead efficiently. Experimental results demonstrate that the proposed X-masking technique requires less storage and hardware overhead with the conventional methods.

이산 웨이브릿 변환을 이용한 탄성파 주시결정

  • Kim, Jin-Hu;Lee, Sang-Hwa
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.2
    • /
    • pp.113-120
    • /
    • 2001
  • The discrete wavelet transform(DWT) has potential as a tool for supplying discriminatory attributes with which to distinguish seismic events. The wavelet transform has the great advantage over the Fourier transform in being able to localize changes. In this study, a discrete wavelet transform is applied to seismic traces for identifying seismic events and picking of arrival times for first breaks and S-wave arrivals. The precise determination of arrival times can greatly improve the quality of a number of geophysical studies, such as velocity analysis, refraction seismic survey, seismic tomography, down-hole and cross-hole survey, and sonic logging, etc. provide precise determination of seismic velocities. Tests for picking of P- and S- wave arrival times with the wavelet transform method is conducted with synthetic seismic traces which have or do not have noises. The results show that this picking algorithm can be successfully applied to noisy traces. The first arrival can be precisely determined with the field data, too.

  • PDF

Novel Reconfigurable Coprocessor for Communication Systems (통신 시스템을 위한 고성능 재구성 가능 코프로세서의 설계)

  • Jung Chul Yoon;Sunwoo Myung Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.6 s.336
    • /
    • pp.39-48
    • /
    • 2005
  • This paper proposes a reconfigurable coprocessor for communication systems, which can perform high speed computations and various functions. The proposed reconfigurable coprocessor can easily implement communication operations, such as scrambling, interleaving, convolutional encoding, Viterbi decoding, FFT, etc. The proposed architecture has been modeled by VHDL and synthesized using the SEC 0.18$\mu$m standard cell library. The gate count is about 35,000 gates and the critical path is 3.84ns. The proposed coprocessor can reduced about $33\%$ for FFT operations and complex MAC, $37\%$ for Viterbi operations, and $48\%\~84\%$ for scrambling and convolutional encoding for the IEEE 802.11a WLAN standard compared with existing DSPs. The proposed coprocessor shows Performance improvements compared with existing DSP chips for communication algorithms.