• Title/Summary/Keyword: 합성 알고리즘

Search Result 1,057, Processing Time 0.022 seconds

Novel IME Instructions and their Hardware Architecture for Fast Search Algorithm (고속 탐색 알고리즘에 적합한 움직임 추정 전용 명령어 및 구조 설계)

  • Bang, Ho-Il;SunWoo, Myung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.58-65
    • /
    • 2011
  • This paper presents an ASIP (Application-specific Instruction Processor) for motion estimation that employs specific IME instructions and its programmable and reconfigurable hardware architecture for various video codecs, such as H.264/AVC, MPEG4, etc. With the proposed specific instructions and variable point 2D SAD hardware accelerator, it can handle the real-time processing requirement of High Definition (HD) video. With the SAD unit and its parallel operations using pattern information, the proposed IME instructions support not only full search algorithms but also other fast search algorithms. The hardware size is 25.5K gates for each Processing Element Group (PEG) which has 128 SAD Processor Elements (PEs). The proposed ASIP has been verified by the Synopsys Processor Designer and implemented by the Design Compiler using the IBM 90nm process technology. The hardware size is 453K gates for the IME unit and the operating frequency is 188MHz for 1080p@30 frame in real time. The proposed ASIP can reduce the hardware size about 26% and the number of operation cycles about 18%.

Design of a GFAU(Galois Field Arithmetic Unit) in (GF(2m)에서의 사칙연산을 수행하는 GFAU의 설계GF(2m))

  • Kim, Moon-Gyung;Lee, Yong-Surk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2A
    • /
    • pp.80-85
    • /
    • 2003
  • This paper proposes Galois Field Arithmetic Unit(GFAU) whose structure does addition, multiplication and division in GF(2m). GFAU can execute maximum two additions, or two multiplications, or one addition and one multiplication. The base architecture of this GFAU is a divider based on modified Euclid's algorithm. The divider was modified to enable multiplication and addition, and the modified divider with the control logic became GFAU. The GFAU for GF(2193) was implemented with Verilog HDL with top-down methodology, and it was improved and verified by a cycle-based simulator written in C-language. The verified model was synthesized with Samsung 0.35um, 3.3V CMOS standard cell library, and it operates at 104.7MHz in the worst case of 3.0V, 85$^{\circ}C$, and it has about 25,889 gates.

Using Contour Matching for Omnidirectional Camera Calibration (투영곡선의 자동정합을 이용한 전방향 카메라 보정)

  • Hwang, Yong-Ho;Hong, Hyun-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.125-132
    • /
    • 2008
  • Omnidirectional camera system with a wide view angle is widely used in surveillance and robotics areas. In general, most of previous studies on estimating a projection model and the extrinsic parameters from the omnidirectional images assume corresponding points previously established among views. This paper presents a novel omnidirectional camera calibration based on automatic contour matching. In the first place, we estimate the initial parameters including translation and rotations by using the epipolar constraint from the matched feature points. After choosing the interested points adjacent to more than two contours, we establish a precise correspondence among the connected contours by using the initial parameters and the active matching windows. The extrinsic parameters of the omnidirectional camera are estimated minimizing the angular errors of the epipolar plane of endpoints and the inverse projected 3D vectors. Experimental results on synthetic and real images demonstrate that the proposed algorithm obtains more precise camera parameters than the previous method.

Deep Learning Based Sign Detection and Recognition for the Blind (시각장애인을 위한 딥러닝 기반 표지판 검출 및 인식)

  • Jeon, Taejae;Lee, Sangyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.115-122
    • /
    • 2017
  • This paper proposes a deep learning algorithm based sign detection and recognition system for the blind. The proposed system is composed of sign detection stage and sign recognition stage. In the sign detection stage, aggregated channel features are extracted and AdaBoost classifier is applied to detect regions of interest of the sign. In the sign recognition stage, convolutional neural network is applied to recognize the regions of interest of the sign. In this paper, the AdaBoost classifier is designed to decrease the number of undetected signs, and deep learning algorithm is used to increase recognition accuracy and which leads to removing false positives which occur in the sign detection stage. Based on our experiments, proposed method efficiently decreases the number of false positives compared with other methods.

The application of convolutional neural networks for automatic detection of underwater object in side scan sonar images (사이드 스캔 소나 영상에서 수중물체 자동 탐지를 위한 컨볼루션 신경망 기법 적용)

  • Kim, Jungmoon;Choi, Jee Woong;Kwon, Hyuckjong;Oh, Raegeun;Son, Su-Uk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.2
    • /
    • pp.118-128
    • /
    • 2018
  • In this paper, we have studied how to search an underwater object by learning the image generated by the side scan sonar in the convolution neural network. In the method of human side analysis of the side scan image or the image, the convolution neural network algorithm can enhance the efficiency of the analysis. The image data of the side scan sonar used in the experiment is the public data of NSWC (Naval Surface Warfare Center) and consists of four kinds of synthetic underwater objects. The convolutional neural network algorithm is based on Faster R-CNN (Region based Convolutional Neural Networks) learning based on region of interest and the details of the neural network are self-organized to fit the data we have. The results of the study were compared with a precision-recall curve, and we investigated the applicability of underwater object detection in convolution neural networks by examining the effect of change of region of interest assigned to sonar image data on detection performance.

A Hardware Design for Realtime Correction of a Barrel Distortion Using the Nearest Pixels on a Corrected Image (보정 이미지의 최 근접 좌표를 이용한 실시간 방사 왜곡 보정 하드웨어 설계)

  • Song, Namhun;Yi, Joonhwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.49-60
    • /
    • 2012
  • In this paper, we propose a hardware design for correction of barrel distortion using the nearest coordinates in the corrected image. Because it applies the nearest distance on corrected image rather than adjacent distance on distorted image, the picture quality is improved by the image whole area, solve the staircase phenomenon in the exterior area. But, because of additional arithmetic operation using design of bilinear interpolation, required arithmetic operation is increased. Look up table(LUT) structure is proposed in order to solve this, coordinate rotation digital computer(CORDIC) algorithm is applied. The results of the synthesis using Design compiler, the design of implementing all processes of the interpolation method with the hardware is higher than the previous design about the throughput, In case of the rear camera, the design of using LUT and hardware together can reduce the size than the design of implementing all processes with the hardware.

Design of Degree-Computationless Modified Euclidean Algorithm using Polynomial Expression (다항식 표현을 이용한 DCME 알고리즘 설계)

  • Kang, Sung-Jin;Kim, Nam-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10A
    • /
    • pp.809-815
    • /
    • 2011
  • In this paper, we have proposed and implemented a novel architecture which can be used to effectively design the modified Euclidean (ME) algorithm for key equation solver (KES) block in high-speed Reed-Solomon (RS) decoder. With polynomial expressions of newly-defined state variables for controlling each processing element (PE), the proposed architecture has simple input/output signals and requires less hardware complexity because no degree computation circuits are needed. In addition, since each PE circuit is independent of the error correcting capability t of RS codes, it has the advantage of linearly increase of the hardware complexity of KES block as t increases. For comparisons, KES block for RS(255,239,8) decoder is implemented using Verilog HDL and synthesized with 0.13um CMOS cell library. From the results, we can see that the proposed architecture can be used for a high-speed RS decoder with less gate count.

Code Optimization in DNA Computing for the Hamiltonian Path Problem (해밀톤 경로 문제를 위한 DNA 컴퓨팅에서 코드 최적화)

  • 김은경;이상용
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.387-393
    • /
    • 2004
  • DNA computing is technology that applies immense parallel castle of living body molecules into information processing technology, and has used to solve NP-complete problems. However, there are problems which do not look for solutions and take much time when only DNA computing technology solves NP-complete problems. In this paper we proposed an algorithm called ACO(Algorithm for Code Optimization) that can efficiently express DNA sequence and create good codes through composition and separation processes as many as the numbers of reaction by DNA coding method. Also, we applied ACO to Hamiltonian path problem of NP-complete problems. As a result, ACO could express DNA codes of variable lengths more efficiently than Adleman's DNA computing algorithm could. In addition, compared to Adleman's DNA computing algorithm, ACO could reduce search time and biological error rate by 50% and could search for accurate paths in a short time.

A Power Control Algorithm for Performance Enhancement in Femtocell Systems (펨토셀 시스템 용량 개선을 위한 전력 제어 알고리즘)

  • Jung, Jae-Hwan;Sohn, Insoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.9
    • /
    • pp.1020-1025
    • /
    • 2016
  • In the recent, the communication market increased every year. Because of the user's demands and exhaustion of wireless resource, we needs a new technology of the communication system. The femtocell is one of the new technology of the communication system. 'Femto' means very small. By using the femtocell that made up the very small cell, the frequency efficiency increase. The femtocell has different cell environments. The Power Control is important for femtocell to avoid interference and unnecessary handover. In this paper, we propose a new femtocell power control that is improvement of handover probability and throughput. And we simulate and check the result.

A Study on Composite Filter using Edge Information of Local Mask in AWGN Environments (AWGN 환경에서 국부 마스크의 에지 정보를 이용한 합성필터에 관한 연구)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.17 no.2
    • /
    • pp.71-76
    • /
    • 2016
  • Digital image processing is being utilized in various fields including medical industry, satellite photos, and factory automation image recognition. However, this kind of image data produces heat by an external cause in the course of being processed, transmitted, and stored. Most typical noises added in the images are AWGN and salt and pepper. MF, CWMF, and AWMF are methods used to restore images damaged by AWGN and the existing methods are likely to damage detailed information such as an edge. Therefore, this paper suggests an algorithm applying weight of average filter, average filter depending on pixel, and spatial weight filter based on edge size of local mask in an AWGN environment, in a different way. Also, this paper compares functions of existing methods by using PSNR to prove excellence of the suggested algorithm.