• Title/Summary/Keyword: 합성 개구면 레이다

Search Result 23, Processing Time 0.017 seconds

Bistatic Synthetic Aperture Radar Imaging Using a Monostatic Equivalent Model (모노스태틱 등가 모델을 활용한 바이스태틱 SAR 영상 형성에 관한 연구)

  • Ryu, Bo-Hyun;Kang, Byung-Soo;Lee, Myung-Jun;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.9
    • /
    • pp.693-700
    • /
    • 2018
  • In this paper, we propose a method to generate SAR(synthetic aperture radar) images for bistatic radar. The bistatic SAR can overcome several limitations of monostatic SAR, because the former can be applied to a variety of scenarios, compared to the latter. However, no study has been conducted on bistatic SAR imaging so far. In this paper, we propose a method to generate bistatic SAR images using the monostatic equivalent model and conventional monostatic SAR imaging algorithms. Simulations using airborne SAR in the bistatic geometry validated the efficacy of the proposed method.

Study on Spaceborne SAR System Performance Improvements Using Antenna Pattern Resynthesis in Presence of Element Failure (안테나 소자 결함을 고려한 안테나 빔 패턴 재합성을 통한 위성 SAR 성능향상에 대한 연구)

  • Kang, Min-Seok;Won, Young-Jin;Lim, Byoung-Gyun;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.8
    • /
    • pp.624-631
    • /
    • 2018
  • To meet the requirements of various satellite synthetic aperture radar(SAR) system performance parameters, the characteristics of the antenna pattern should be analyzed. In this paper, we propose a method to improve the SAR system performance using an effective technique for optimizing antenna pattern synthesis in the presence of element failure. The desired antenna pattern can be synthesized by referring to the optimized antenna mask templates using the particle swarm optimization algorithm. In the simulation, the performance of the proposed method is verified by analyzing characteristics related to the SAR system performance parameters using antenna pattern regeneration.

Feasibility Study of Forward-Looking Imaging Radar Applicable to an Unmanned Ground Vehicle (무인 차량 탑재형 전방 관측 영상 레이다 가능성 연구)

  • Sun, Sun-Gu;Cho, Byung-Lae;Park, Gyu-Churl;Nam, Sang-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1285-1294
    • /
    • 2010
  • This study describes the design and verification of short range UWB(Ultra Wideband) imaging radar that is able to display high resolution radar image for front area of a UGV(Unmanned Ground Vehicle). This radar can help a UGV to navigate autonomously as it detects and avoids obstacles through foliage. We describe the relationship between bandwidth of transmitting signal and range resolution. A vivaldi antenna is designed and it's radiation pattern and reflection are measured. It is easy to make array antenna because of small size and thin shape. Aperture size of receiving array antenna is determined by azimuth resolution of radar image. The relation of interval of receiving antenna array, image resolution and aliasing of target on a radar image is analyzed. A vector network analyzer is used to obtain the reflected signal and corner reflectors as targets are positioned at grass field. Applicability of the proposed radar to UGV is proved by analysis of image resolution and penetrating capability for grass in the experiment.

Comparisons of ISAR Imaging Methods for Maritime Targets with Real Measured Radar Data (해상 표적의 실제 레이다 측정 데이터를 이용한 ISAR 영상 형성 기법 성능 비교)

  • Kang, Byung-Soo;Lee, Myung-Jun;Ryu, Bo-Hyun;Baek, Jin-Hyeok;Kim, Chan-Hong;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.9
    • /
    • pp.740-748
    • /
    • 2017
  • In this paper, we compared performance of conventional inverse synthetic aperture radar(ISAR) imaging methods for maritime target with real data measured by X-band radar. Following conventional approaches were used for performance comparisons: 1) range instantaneous Doppler(RID) method, 2) range Doppler(RD) processing with phase adjustment, and 3) RD processing with prominent point processing(PPP). It is noteworthy that the comparison results have significance of providing basic concept to establish ISAR imaging frame work for maritime targets.

A Study on the Rotational Motion Compensation Method for ISAR Imaging (ISAR 영상 형성을 위한 회전운동보상 기법 연구)

  • Kang, Byung-Soo;Bae, Ji-Hoon;Chung, Sung-Eun;Kim, Chan-Hong;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.69-75
    • /
    • 2016
  • In this paper, we propose a inverse synthetic aperture radar(ISAR) rotational motion compensation(RMC) method to remove residual blurring caused by non-uniform rotational motion of a target. First, a range bin having an isolated scatterer is selected. Next, polynomial phase signal in the selected range bin is estimated by using both Fourier transform(FT) and polynomial-phase transform(PPT). Finally, a new slow time variable that uniformly samples radar signal along the aspect angle directions is defined by using the estimated phase signal, and we interpolate radar signal in terms of the new time variable. As a result, rotational motion to blurr ISAR images is removed, and focused ISAR images are obtained. Simulation results using battleship model validate the robustness and effectiveness of our proposed RMC method.

A Study on Autofocus Method for Back-Projection Algorithm under the Squint Mode in Synthetic Aperture Radar (스퀸트 모드 SAR 영상 형성을 위한 역투영 알고리즘에서의 자동초점 기법 적용 연구)

  • Hwang, Jeonghun;Kim, Whan-Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.7
    • /
    • pp.81-89
    • /
    • 2017
  • Autofocus(AF) Method is essential to overcome the performance degradation due to motion measurement errors under airborne SAR environment. In this paper, back-projection algorithm(BPA) is applied to SAR raw data acquired under the squinted mode, and preprocessing algorithm of AF for BPA is investigated. To apply AF to SAR image effectively, image backplane rotation method and doppler location alignment function for BPA are proposed. The proposed method is applied to SAR raw data acquired in a flight test and shows excellent performance improvement in real data.

Ground Moving Target's Velocity Estimation in SAR-GMTI (SAR-GMTI에서 지상이동표적의 속도 추정 기법)

  • Bae, Chang-Sik;Jeon, Hyeon-Mu;Yang, Dong-Hyeuk;Yang, Hoon-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.2
    • /
    • pp.139-146
    • /
    • 2017
  • A ground moving target's velocity estimation algorithm applicable for a SAR-GMTI system using 2 channel displaced phase center antenna(DPCA) is proposed. In this algorithm, we assume target's across-track velocity can be estimated by along-track interferometry (ATI) and present a method to estimate target's along-track velocity. To accomplish this method, we first transform a radar-target geometry in which a moving target has zero velocity via altering a radar velocity such that target's velocity is reflected into it and next manipulate the spectral centers of the subapertures within the synthetic aperture. The validity of the proposed algorithm is demonstrated through simulation results showing the performance of the target's velocity estimation and the enhancement of reconstructed target image quality in terms of resolution and SINR.

A Study on Rotational Motion Compensation Method for Bistatic ISAR Imaging (바이스태틱 ISAR 영상 형성을 위한 회전운동보상 기법 연구)

  • Kang, Byung-Soo;Ryu, Bo-Hyun;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.8
    • /
    • pp.670-677
    • /
    • 2017
  • In this paper, we propose a rotational motion compensation(RMC) for bistatic inverse synthetic aperture radar(Bi-ISAR) imaging. For this purpose, geometry-error, caused by changes of bistatic-angle, is removed using known position information of a transmitter, a receiver, and target trajectories. Next, RMC is performed to compensate non-uniform rotational motion error by reformatting radar signal in terms of a newly defined slow time variable that converts non-uniform rotational motion into uniform one. Simulation results using an aircraft model composed of ideal point scatterers validate the efficacy of the proposed Bi-ISAR RMC method.

Improvement of KOMPSAT-5 Image Resolution for Target Analysis (객체 분석을 위한 KOMPSAT-5 영상의 해상도 향상 성능 분석)

  • Lee, Seung-Jae;Chae, Tae-Byeong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.275-281
    • /
    • 2019
  • A synthetic aperture radar(SAR) satellite is more effective than an optical satellite for target analysis because an SAR satellite can provide two-dimensional electromagnetic scattering distribution of a target during all-weather and day-and-night operations. To conduct target analysis while considering the earth observation interval of an SAR satellite, observing a specific area as wide as possible would be advantageous. However, wider the observation area, worse is the resolution of the associated SAR satellite image. Although conventional methods for improving the resolution of radar images can be employed for addressing this issue, few studies have been conducted for improving the resolution of SAR satellite images and analyzing the performance. Hence, in this study, the applicability of conventional methods to SAR satellite images is investigated. SAR target detection was first applied to Korea Multipurpose Satellite-5(KOMPSAT-5) SAR images provided by Korea Aerospace Research Institute for extracting target responses. Extrapolation, RELAX, and MUSIC algorithms were subsequently applied to the target responses for improving the resolution, and the corresponding performance was thereby analyzed.

Model for Simulating SAR Images of Earth Surfaces (지표면의 SAR 영상 시뮬레이션 모델)

  • Jung Goo-Jun;Lee Sung-Hwa;Kim In-Seob;Oh Yisok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.6 s.97
    • /
    • pp.615-621
    • /
    • 2005
  • In this paper, a model for simulating synthetic aperture radar(SAR) images of earth surfaces. The earth surfaces include forest area, rice crop field, other agricultural fields, grass field, road, and water surface. At first, the backscattering models are developed for bare soil surfaces, water surfaces, short vegetation fields such as rice fields and grass field, other agriculture areas, and forest areas. Then, the SAR images are generated from the digital elevation model(DEM) and digital terrain map. The DTM includes ten parameters, such as soil moisture, surface roughness, canopy height, leaf width, leaf length, leaf density, branch length, branch density, trunk length, and trunk density, if applicable. The scattering models are verified with measurements, and applied to generate an SAR image for an area.