Model for Simulating SAR Images of Earth Surfaces

지표면의 SAR 영상 시뮬레이션 모델

  • Jung Goo-Jun (Nex1 Future Co., Ltd.) ;
  • Lee Sung-Hwa (Samji Electronics Co., Ltd.) ;
  • Kim In-Seob (Department of Radio Science and Communication Engineering, Hongik University) ;
  • Oh Yisok (Department of Radio Science and Communication Engineering, Hongik University)
  • Published : 2005.06.01

Abstract

In this paper, a model for simulating synthetic aperture radar(SAR) images of earth surfaces. The earth surfaces include forest area, rice crop field, other agricultural fields, grass field, road, and water surface. At first, the backscattering models are developed for bare soil surfaces, water surfaces, short vegetation fields such as rice fields and grass field, other agriculture areas, and forest areas. Then, the SAR images are generated from the digital elevation model(DEM) and digital terrain map. The DTM includes ten parameters, such as soil moisture, surface roughness, canopy height, leaf width, leaf length, leaf density, branch length, branch density, trunk length, and trunk density, if applicable. The scattering models are verified with measurements, and applied to generate an SAR image for an area.

본 논문에서는 산악지대, 논, 채소밭, 풀밭, 도로, 수면 등을 포함하는 지표면에 대한 합성 개구면 레이다(SAR) 영상을 생성하여 주는 시뮬레이션 모델을 선보인다. 우선 토양, 수면, 논, 밭과 같은 풀 층과 나무 숲 등에서의 산란 모델을 개발하였다. 그런 다음에, 표고 데이터와 지형 데이터를 이용하여 SAR 영상을 생성하였다. 이용된 지형 변수로는 토양 수분 함유량, 표면 거칠기, 초목 층 높이, 잎 넓이, 잎 길이, 잎 밀도, 가지 길이, 가지 밀도, 나무 기둥 길이, 나무 기둥 밀도를 포함하는 10개이다. 개발된 산란 모델들은 실험 데이터와 비교하는 방식으로 정확성을 증명하였고, 특정 지역에서의 SAR 영상을 생성하였다.

Keywords

References

  1. A. Ishimaru, Wave Propagation and Scattering In Random Media, IEEE press, 1997
  2. F. T. Ulaby, M. K. Moore, and A. K. Fung, Microwave Remote Sensing, Active and Passive, Artech House, Norwood, MA, USA, vol. 2, 1982
  3. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Micirowave Remote Sensing, John Wiley & Sons, 1985
  4. Y. Oh, K. Sarabandi, and F. T. Ulaby, 'An empirical model and an inversion technique for radar scattering from bare soil surfaces', IEEE Trans. Geosci. Remote Sensing, vol. 30, pp. 370-382, Mar. 1992 https://doi.org/10.1109/36.134086
  5. F. T. Ulaby, K. Sarabandi, K. McDonald, M. Whitt, and M. C. Dobson, 'Michigan microwave canopy scattering model', Int. J. Remote Sensing, vol. 11, no. 7, pp. 1223-1253, 1990 https://doi.org/10.1080/01431169008955090
  6. A. K. Fung, Microwave Scattering and Emission Models and Their Applications, Artech House, Boston, MA, 1994
  7. Y. Oh, K. Sarabandi, and F. T. Ulaby, 'Semiempirical model of the ensemble-averaged differential mueller matrix for microwave backscattering from bare soil surfaces', IEEE Trans. Geosci. Remote Sensing, vol. 40, no. 6, pp. 1348-1355, 2002 https://doi.org/10.1109/TGRS.2002.800232
  8. F. T. Ulaby, C. Elachi, Radar Polarimetry for Geoscience Applications, Artech House, Inc., 1990
  9. Yisok Oh, 'Comparative evaluation of two analytical models for microwave scattering from deciduous leaves', Korean Journal of Remote Sensing, vol. 20, no. 1, pp. 3946, 2004
  10. F. T. Ulaby, M. A. El-rayes, 'Microwave dielectric spectrum of vegetation-Part II: Dual-dispersion model', IEEE Trans. Geosci. Remote Sensing, vol. GE-25, pp. 550-557, 1987 https://doi.org/10.1109/TGRS.1987.289833
  11. Y. Oh, Y-M. Jang, and K. Sarabandi, 'Full-wave analysis of microwave scattering from short vegetation: An investigation on the effect of multiple scattering', IEEE Trans. Geosci. Remote Sensing, vol. 40, no. 11, pp. 2522-2526, Nov. 2002 https://doi.org/10.1109/TGRS.2002.805085