• Title/Summary/Keyword: 합성품종

Search Result 144, Processing Time 0.024 seconds

Growth and Quality Characteristics of Korean Bread Wheat in Response to Elevated Temperature during their Growing Season (밀 재배기간 온도상승이 빵용 밀의 생육 및 품질 특성에 미치는 영향)

  • Chuloh Cho;Han-yong Jeong;Yurim Kim;Jinhee Park;Kyeong-Hoon Kim;Kyeong-Min Kim;Chon-Sik Kang;Jong-Min Ko;Jiyoung Shon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.234-241
    • /
    • 2022
  • Wheat (Triticum aestivum L.) is a major staple foods and is in increasing demand in the world. The elevated temperature caused by changes in climate and environmental conditions is a major factor affecting wheat development and grain quality. The optimal temperature range for winter wheat is between 15 and 25℃, and it is necessary to study the physiological characteristic of wheat according to elevated temperatures. This study presents the effect of elevated temperature on the yield and quality of two Korean bread wheat (Baekkang and Jokyoung) in temperature gradient tunnels (TGT). Two bread wheat cultivars were grown in TGT at four different temperature conditions: T0 (control, near ambient temperature), T1 (T0+1℃), T2 (T0+2℃), (T0+2℃), T3 (T0+3℃). The period from sowing to heading stage accelerated and the number of grains per spike and grain yield reduced under T3 condition compared with those under T0 condition. Grain filling rate and grain maturity also accelerated with elevated temperature (T3). The increase in temperature led to the increase in protein contents, whereas decreased the total starch contents. These results are consistent with the decreased expression of starch synthesis genes and increased gliadin synthesis or gluten metabolism genes during the late grain filling stage. Taken together, our results suggest that the increase in temperature (T3) led to the decrease in grain yield by regulating the number of grains/spike, whereas increased the protein content by regulating the expression of starch and gliadin-related genes or gluten metabolism process genes expression. In addition, our results provide a useful physiological information on the response of wheat to heat stress.

Changes of Isoflavone Contents During Maturation under Different Planting Dates in Black Soybean (파종기 차이에 따른 등숙기간 중 검정콩의 아이소플라본 함량 변화)

  • Yi, Eun-Seob;Yoon, Seong-Tak
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.4
    • /
    • pp.424-429
    • /
    • 2012
  • This study was carried out to investigate the influence of different planting time on the synthesis of isoflavone in black soybean, Three varieties used in this experiment were lpumgeomjeongkong, Cheongjakong and Heugcheongkong which had different ecotypes, repectively. Seeds were sown at different time, May 15th, May 30th and June 15th with planting density of $60{\times}15cm$. In order to analyze the content of isoflavone, we collected sample every 5 days from 30 days after flowering to harvest and analyzed them with UPLC. As sowing was delayed, the content of isoflavone increased in all of three varieties. The content of genistein was greater than daidzein and glycitein. Increase of Glycitein was not distinct from 55 days after flowering(DAF) and it was stable against temperature change during the seed developing period. Although the content of genistein in Ilpumgeomjeongkong from 50 to 55 DAF, in Cheongjakong from 40 to 55 DAF and in Heugcheongkong from 60 to 65 DAF was lower than the content of daidzein, it was higher than that of daidzein afterward. In the statistical analysis on the relationship between average temperature and the content of aglycone isoflavone at 5-day intervals from 30 DAF during the grain filling period, genistein in Ilpumgeomjeongkong showed meaningful correlation as y=-15.28x+407.9 ($R^2=0.505^*$), diadzein in Cheongjakong showed meaningful correlation as y=-6.188x-164.5($R^2=0.454^*$), and genistein showed significantly high correlation as y=-11.59x+297.6 ($R^2=0.545^{**}$). Taking all the above results into consideration, it was suggested that the regions suitable for high content of isoflavone in black soybean be the northern area of Gyeonggi-do and Gangwon-do, Chungcheongbuk-do and inland area of Gyeongsangbuk-do, where are relatively low average temperature from flowering stage($R_2$) during the grain filling period.

Studies on Reserved Carbohydrates and Net energy Lactation ( NEL ) in Corn and Sorghum II. Synthesis and accumulation pattern of cell-wall constituents (옥수수 및 Sorghum에 있어서 탄수화물과 NEL 축적에 관한 연구 II. Cell-Wall Constituents 합성 및 축적형태)

  • ;G. Voigtlaender
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.5 no.2
    • /
    • pp.127-135
    • /
    • 1985
  • The effects of morphological development and environmental temperature on synthesis and accumulation behavior of cell-wall constituents were studied in maize cv. Blizzard and sorghum cv. Sioux and Pioneer 931 at Muenchen Technical University from 1979 to 1981. Various growth stages of maize and sorghum plants were grown on field and phytotron at 4 temperature regimes of 30/25, 25/20, 28/18 and 18/8 degree C and mid-summer sunlight over 13-hour days. The results are summarized as follow: 1. Cell-wall constituents in sorghum and maize plants were shown to have a great synthesis rates at early growth stage from growing point differentiation to final leaf visible. The highest concentration of cell wall contents were found at heading stage with 52-54% and 64-68% of neutral detergence fiber, and 30% and 45% of acid detergence fiber foe maize and sorghum, respectively. 2. The structural carbohydrates, cellulose and hemicellulose, were found as a main components of cell-wall constituents. Cellulose were mainly accumulated in stalks, while hemicellulose were an important cell wall components in leaves and panicle. 3. Synthesis rates of cell-wall constituents and non-strnctural carbohydrates were associated with increasing of temperature. Reserved carbohydrates such as fructosan, mono - and dissaccharose in plant were, however, declined when the temperature exceeded 30 deg C, during the accumulation of cellulose, hemicellulose and lignin were increased continuously. 4. Cell-wall constituents lowered digestibility and net energy accumulation in sorghum and maize plants. In a in vitro and in vivo trial, it was found a negative correlation between digestion dry matter and cell wall constituents, especially cellulose and lignin.

  • PDF

Studies on Synthesis and Accumulation Pattern of Cyannogenic Glycosides in Sorghum Piants (Sorghum 식물에 있어서 Cyanogenic Glycosides의 합성 및 축적에 관한 연구)

  • ;G. Voigtlaender
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.5 no.2
    • /
    • pp.121-126
    • /
    • 1985
  • Phytotron and field experiments were conducted to determine the influence of morphological growth stage and environmental temperature on synthesis and accumulation pattern of cyanogenic glycosides in sorghum cv. Pioneer 931 and Sioux at Munich technical university from 1979 to 1980. Various growth stages of sorghum plants were grown in phytotron at 4 different temperature regimes of 30/25, 25/20, 28/18 and 18/8 degree C with 35,000 Lux over 13-h days. The results obtained are summarized as follows: 1. Cyanogenic glycosides in sorghum plants were shown to have a great synthetic rate at early growth stages. The highest concentrations of hydrocyanic acid (HCN) were found at 2-leaf stage with 2384 and 1800ppm (DM basis) for Pioneer 931 and Sioux respectively. The contents of HCN were, however, however decreased markedly as morphological development, which shows a value of 173ppm (Pioneer 931) and 70ppm (Sioux) at heading stages. 2. Changes of hydrocyanic acid in sorghum plants were positive correlated with leaf weight ratio and leaf area ratio ($P{\leqq}0.1%$), while plant height shows a negative correlation with HCN contents ($P{\leqq}0.1%$). 3. Cyanogenic glycosides were accumulated in young plants mainly in leaves. During the late maturities, the contents of HCN in leaves and stalks were shown, however, a similar distribution. 4. Synthesis rates of cyanogenic glycosides were increased under high temperature. Accumulated hydrocyanic acid in the plants was, however declined when temperature exceeded 30 degree C. 5. Synthesis rates of cyanogenic glycosides were affected by nitrogen reductase activity (NRA). The concentration of hydrocyanic acid in sorghum plants was associated with increasing of nitrate-N accumulation.

  • PDF

Effect of LED mixed light conditions on the glucosinolate pathway in brassica rapa (배추 유묘의 글루코시놀레이트 합성 기작에 미치는 LED 혼합광의 효과)

  • Moon, Junghyun;Jeong, Mi Jeong;Lee, Soo In;Lee, Jun Gu;Hwang, Hyunseung;Yu, Jaewoong;Kim, Yong-Rok;Park, Se Won;Kim, Jin A
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.245-256
    • /
    • 2015
  • In the agricultural industries, LEDs are used as supplementary, as well as main lighting sources in closed cultivation systems. In cultivation using artificial light sources, various light qualities have been tried to supplement fluorescent lamps to promote plant growth and metabolism. Microarray analysis of Brassica rapa seedlings under blue and fluorescent mixed with blue light conditions identified changes in three genes of the glucosinolate pathway. This attracted attention as functional materials highly expressed 3.6-4.6 fold under latter condition. We selected four more genes of the glucosinolate pathway from the Brassica database and tested their expression changes under fluorescent light mixed with red, green, and blue, respectively. Some genes increased expression under red and blue mixed conditions. The Bra026058, Bra015379, and Bra021429; the orthologous genes of CYP79F1, ST5a, and FMOGS-OX1 in Arabidopsis, are highly expressed in Brassica rapa under fluorescent mixed with blue light conditions. Further, Bra029355, Bra034180, Bra024634, and Bra022448; the orthologous genes of MAM1, AOP3, UGT74B1, and BCAT4 in Arabidopsis, are highly expressed in Brassica rapa under fluorescent mixed with red light conditions. The various light conditions had unique effects on the varieties of Brassica, resulting in differences in glucosinolate synthesis. However, in some varieties, glucosinolate synthesis increased under mixed blue light conditions. These results will help to construct artificial light facilities, which increase functional crops production.

Cencept of adaptability for heavy nitrogen in view of nitrogen metabolism -II. Nitrogen metabolism under the change of itrogen nenvironment (내비성(耐肥性)에 관(關)한 질소대사적(窒素代謝的) 개념(槪念) -II. 질소환경(窒素環境) 변화(變化)에 따른 질소대사(窒素代謝))

  • Yoon, Jong Hyuk;Park, Hoon;Cho, Sung Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.1
    • /
    • pp.49-53
    • /
    • 1974
  • Varietal difference in nitrogen metabolism was investigated under water culture system with high (50 or 80ppm) and low (10 or 40 ppm) levels of nitrogen and with two-week minus nitrogen treatment at maximum tillering and heading stage using a leading local variety, Jinheung and high-yielding IR667 line (newly bred tropical variety). 1. In high nitrogen level Jinheung showed higher yield than IR667. vise versa in low nitrogen level. 2. Poor yield of IR667 at high nitrogen may be due to ammonium toxicity that was eliminated by minus nitrogen from culture solution. 3. IR667 was more sensitive to the change of nitrogen environment. 4. With high nitrogen medium Jinheung showed nigher nitrogen uptake and higher capacity of protein synthesis than IR667, and vise versa at low nitrogen medium. 5. From the above facts it could be concluded that Jinheung has higher metabolic adaptability for heavy nitrogen while IR667 has higher structural adaptability for heavy mitrogen and that better productive adaptability will be resulted in the combination of both characteristics.

  • PDF

Kernel Characteristics of the Modified Opaque-2 Systhetics, Zea mays, L. (변갱 오페이크-2 옥수수의 종실특성)

  • Bong-Ho Chae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.1
    • /
    • pp.49-55
    • /
    • 1986
  • To obtain basic information required for improving grain yield of the two modified opaque-2 synthetics, which have been developed at College of Agr., Chungnam National Univ. in 1980 and named as Puyo No.2 and No.3, physical kernel characteristics of the two synthetics were fully investigated and results obtained are as follows: Puyo No.2 synthetics had a smaller kernel size with lighter weight than the Puyo No.3. The Puyo No.2 synthetics had higher kernel density than the Puyo No.3 with large Kernel size. The Puyo No.2 had kernels with heterogenous endosperm phenotypes. Some kernels had mottled patches on endosperm, while other kernels 1/2 and 1/2 phenotypes. All the modified opaque-2 synthetics had somewhat lighter endosperm weight than the normal check hybrid. The Puyo No.2 synthetics with smaller kernel size had more germ portion compared with large kernel, Puyo No.3. The Puyo No.2 had shown also typical endosperm texture when observed under microscope after cutting by glass knife. The lysine content of the Puyo No.2 was higher than those of other varieties studied. Breeding schemes to improve the yield capacity of the two modified opaue-2 synthetics were discussed.

  • PDF

Current status and prospects of chrysanthemum genomics (국화 유전체 연구의 동향)

  • Won, So Youn;Kim, Jung Sun;Kang, Sang-Ho;Sohn, Seong-Han
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.272-280
    • /
    • 2016
  • Chrysanthemum is one of the top floriculture species with ornamental and medicinal value. Although chrysanthemum breeding program has contributed to the development of various cultivars so far, it needs to be advanced from the traditional phenotype-based selection to marker-assisted selection (molecular breeding) as shown in major cereal and vegetable crops. Molecular breeding relies on trait-linked molecular markers identified from genetic, molecular, and genomic studies. However, these studies in chrysanthemum are significantly hampered by the reproductive, genetic, and genomic properties of chrysanthemum such as self-incompatibility, inbreeding depression, allohexaploid, heterozygosity, and gigantic genome size. Nevertheless, several genetic studies have constructed genetic linkage maps and identified molecular markers linked to important traits of flower, leaf, and plant architecture. With progress in sequencing technology, chrysanthemum transcriptome has been sequenced to construct reference gene set and identify genes responsible for developments or induced by biotic or abiotic stresses. Recently, a genome sequencing project has been launched on a diploid wild Chrysanthemum species. The massive sequencing information would serve as fundamental resources for molecular breeding of chrysanthemum. In this review, we summarized the current status of molecular genetics and genomics in chrysanthemum and briefly discussed future prospects.

Photo-aging regulation effects of newly bred Green ball apple (신품종 그린볼 사과의 광노화인자 조절효과)

  • Lee, Eun-Ho;Lee, Seung-Yeol;Jung, Hee-Young;Kang, In-Kyu;Ahn, Dong-Hyun;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.1
    • /
    • pp.75-82
    • /
    • 2020
  • In this study, extracts from the Green ball apple peel (GBE) and the newly bred green ball apple from Korea showed inhibition effects on photo-aging factor regulation associated with skin aging. To investigate the inhibition effect on photo-aging factor regulation in skin, GBE was treated with UVB to induce photo-aging related factors in CCD986sk fibroblast cells. Photo-aging factor regulation effects showed that GBE inhibited UVB-stimulated matrix metalloproteinase (MMP)-1 and MMP-9 protein synthesis in collagen type I alpha 2 chain (COL1A2), MMP-1, MMP-9, and tissue inhibitors of metalloproteinase (TIMP)-1 protein expression. The expression of COL1A2 and TIMP-1 protein was significantly increased. The mRNA expression levels of COL1A2, MMP-1, MMP-9, hyaluronan synthase (HAS)2, transforming growth factor (TGF)-β, and TIMP-1 were decreased by GBE. The expression of TIMP-1 and TGF-β, which are regulators involved in matrix metalloproteinase and type I procollagen expression, was found to increase with increasing expression of COL1A2. The expression of HAS2, which is involved in the production of hyaluronic acid, one of the structural proteins constituting the skin, was also confirmed. Therefore, GBE showed excellent efficacy against photo-aging factor regulation and could be used as functional material to prevent and treat skin aging.

Identification of Nucleolus Organizer Regions of Korean Cattle Chromosomes by AgNOR Staining (AgNOR 염색법에 의한 한우 염색체의 Nucleolus Organizer Regions 양상 분석)

  • Jung , W.;Sohn, S.H.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.695-702
    • /
    • 2003
  • Nucleolus Organizer Regions (NORs) are the specific chromosome sites where ribosomal genes are located and highly expressed. We have applied the AgNOR staining to identify the distribution of NORs in the chromosomes of Korean Cattle. We have also studied the NORs pattern on the cells originated from different breeds, tissues and sex. Peripheral blood from forty-four Korean Cattle and Holstein was cultured for chromosme preparation. The fibroblast culture from biopsied ear skins was also conducted for chromosome analysis. The distribution of NORs was analyzed by sequential Ag staining and G-banding on metaphases of the cells. In Korean Cattle, the NORs are localized on the telomeres of the five chromosome pairs number 2, 3, 4, 11 and 28. The number of NORs per metaphase ranged from 2 to 10 giving a mean value of 5.6. The number of NORs per cell varied among individuals and cells within same individual. The size of NORs also differed in NO-chromosomes. The number of NORs was significantly different between Korean Cattle and Holstein, fibroblasts and lymphocytes, and male and female. However, the distribution and frequency of NORs were similar among the cells regardless of breeds, tissues, and sex.