• Title/Summary/Keyword: 합성폐수

Search Result 171, Processing Time 0.026 seconds

Studies on Adsorption Behaviour for Heavy Metal Ions from Waste Water Using Eco-philic Cellulose Derivatives (환경친화형 셀룰로오스계 유도체의 합성 및 폐수내 중금속 이온 흡착거동 연구)

  • Lee, Soon-Hong;Bae, Joong-Don
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1146-1152
    • /
    • 2005
  • Graft copolymers were synthesized from methylcellulose(MC) and acrylic acid(AA) with active carboxyl groups in the presence of potassium persulfate($K_2S_2O_8$) initiator to enhance adsorption capacity of toxic heavy metal such as $Pb^{2+}$ and $Cu^{2+}$ from wastewater. The resulting grafted copolymers(MC-g-AA/PAA) were mixture of the graft copolymers from MC and AA(MC-g-AA) and polyacrylic acid homopolymers(PAA). The degree of palling was increased with rising concentration of monomer and initiator under the reaction conditions at $60^{\circ}C$, 3 hrs. The water insoluble property of MC-g-AA showed more than 19.7% degree of grafting. So that it could be an adsorbent of heavy metals. Adsorption characteristics of the MC-g-AA were evaluated depending on the degree of grading, pH of wastewater, adsorption time, dosage of MC-g-AA and concentration of heavy metals in the different conditions. Degree of grafting, and initial concentration of heavy metal ions increased, the adsorption amount of $Pb^{2+}$ and $Cu^{2+}$ increased, but added MC-g-AA increased, the adsorption amount per unit weight of $Pb^{2+}$ and $Cu^{2+}$ decreased. The MC-g-AA showed the high $Pb^{2+}$ and $Cu^{2+}$ adsorption amount in the range pH $4{\sim}6$. Also all of $Pb^{2+}$ and $Cu^{2+}$ ions reached in adsorption equilibrium in neighborhood 4 hours. The adsorption of heavy metals described by Freundlich isotherm, it was determined the value of l/n of $Pb^{2+}$ and $Cu^{2+}$ that 0.4294 and 0.3453, respectively.

Supercritical Dyeing Technology (초임계 염색 기술)

  • Kim, Taewan;Park, Geonhwan;Kong, Wonbae;Lee, Youn-Woo
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • As the social demands for environmental pollution increase and regulations on the dyeing process wastewater are strengthened, supercritical dyeing process has been attracting attention as an alternative technology to reduce wastewater and energy consumption. In the supercritical dyeing process where carbon dioxide is used as a solvent instead of water as a solvent, there is no wastewater generated. The unfixed dyes can be reused later which makes the process environment-friendly. Also, after dyeing process, dried textiles can be obtained without additional drying process, which makes the process energy efficient. In this article, we have summarized the development of the supercritical dyeing process along with the research in Korea today and compared the principle of supercritical dyeing process with conventional dyeing process. To further explain the principle, studies of the distribution factor and mass transfer of dyes in supercritical carbon dioxide and fibers, as well as solubility between supercritical $CO_2$ and dyes are discussed. The dynamic behavior of dyes in supercritical dyeing apparatus and summary of the supercritical dyeing facilities developed around the world are also discussed. Finally, we suggest the direction of research and development for optimization of supercritical dyeing process and application to synthetic fibers and natural fibers except for polyester.

A Study on the Kinetics of a Pasked Bed Aerobic Biofilm Rrocess (충전상(充塡床) 호기성(好氣性) 생물막공법(生物膜工法)의 반응속도론(反應速度論)에 관한 연구(研究))

  • Cho, Kwang Myeung;Jeong, Jae Kee;Son, Jong Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.45-53
    • /
    • 1987
  • The purpose of this research was to study the kinetics of a packed bed aerobic biofilm process. Experiments were carried out by feeding an aerated packed bed reactor with a synthetic wastewater. The reactor packed with glass beads as media had a nominal hydraulic detention time of 5 hours. The flow pattern in the reactor was determined by a tracer test using a NaCl solution to be a completely-mixed type. The results of the research showed that the F/M ratio in the reactor was almost constant since the the biomass increased due to the growth of biofilm as the volumetric organic loading increased. It was also proved theoretically and experimentally that packed bed aerobic biofilm process could be analyzed by the kinetics of completely-mixed activated sludge process with sludge recycle.

  • PDF

The Effect of Fixed Media and Recycling Ratio on Nutrients Removal in a Pilot-Scale Wastewater Treatment Unit (고정식 담체 유무와 반송비에 따른 소규모 하수처리 시스템 내 영양염류 제거 특성)

  • Hwang, Jae-Hoon;Cho, Dong-Wan;Kim, Chung-Hwan;Jeon, Byong-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.6
    • /
    • pp.449-455
    • /
    • 2013
  • The effect of recycling ratio and fixed media on nitrate and phosphate removal was investigated in a pilot-scale wastewater treatment unit using synthetic wastewater. Addition of fixed media increased nitrate removal from 45 to 58% while no noticeable change was observed for Chemical Oxygen Demand (COD) and phosphate removal (<5%). Nitrate removal efficiency also enhanced (Ca 7%) when the influent wastewater flow was doubled (2Q), however phosphate removal was decreased from 40.9 to 26.6% with the increasing recycling rate. The attached biomass analysis showed the presence of bacteria (73.4 $mg/cm^2$) on the surface of added media in anoxic reactor. Pseudomonas aeruginosa a common denitrifying bacterium dominated the bacterial growth (58%) in the anoxic reactor which was determined using Fluorescence In Situ Hybridization (FISH) analysis.

Biological reduction of perchlorate containing high salinity (퍼클로레이트의 생물학적 환원에 나이트레이트가 주는 영향)

  • Jun, Moonhwee;Hwang, Jungwon;Lee, Jihee;Lee, Kanghoon;Yeom, Icktae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.277-277
    • /
    • 2015
  • 본 연구는 퍼클로레이트의 생물학적 환원 과정에 있어서 나이트레이트의 존재가 미생물에게 어떤 영향을 미치는지를 실험을 통해서 알아보고 적절한 모델링 접근을 통하여 나이트레이트의 퍼클로레이트 환원에 대한 저해의 정량적 분석을 위한 요소들을 도출하기 위해 수행되었다. 100mL 합성폐수를 포함하는 플라스크를 이용한 실험이 수행되었고, 유일 탄소원으로 아세트산나트륨이 사용되었고, 전자수용체로는 퍼클로레이트와 나이트레이트가 사용되었다. 먼저 퍼클로레이트와 나이트레이트 각각을 단일전자수용체로서 넣은 실험을 진행하였다. 퍼클로레이트의 동역학계수 qmax, Ks, Y, b값은 각각 0.9(mgClO4-/mgMLSSday), 42.28(mgClO4-/L), 0.382(mgClO4-/mgMLSS), 0.05(day-1)로 계산되었다. 그리고 나이트레이트의 동역학 계수 qmax, Ks, Y, b값은 각각 13.81(mgNO3-/mgMLSSday), 239.78(mgNO3-/L), 0.275(mgNO3-/mgMLSS), 0.05(day-1)로 계산되었다. 나이트레이트와 퍼클로레이트를 동시에 넣었을 경우에는 나이트레이트의 동역학 계수는 qmax, Ks, Y, b 값은 각각 13.72(mgClO4-/mgMLSSday), 235.64(mgClO4-/L), 0.263(mgClO4-/mgMLSS), 0.05(day-1)로 큰차이 없었으나, 퍼클로레이트의 경우에는 qmax, Ks, Y, b값은 각각 0.6(mgClO4-/ mgMLSSday), 42.24(mgClO4-/L), 0.393(mgClO4-/mgMLSS), 0.05(day-1)로 qmax값은 감소하였고, Y값은 증가하는 모습을 보임으로써, 나이트레이트의 존재가 퍼클로레이트의 환원을 저해시키는 것을 확인할 수 있었다.

  • PDF

Adsorption of Zinc Ion in Synthetic Wastewater by Ethylenediaminetetraacetic Acid-Modified Bentonite (에틸렌다이아민테트라아세트산으로 개질된 벤토나이트를 이용한 합성폐수 내 아연 이온 흡착)

  • Jeong, Myung-Hwa;Kwon, Dong-Hyun;Lim, Yeon-Ju;Ahn, Johng-Hwa
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • Ethylenediaminetetraacetic acid-modified bentonite (EMB) was used for adsorption of zinc ion (Zn) from aqueous solution, compared with unmodified bentonite (UB). Parameters such as dose (0.750 ~ 3.125 g/L), mixing intensity (10 ~ 150 rpm), contact time (0.17 ~ 30 min), pH (2 ~ 7), and temperature (298 ~ 338 K), were studied. Zn removal efficiency for EMB was 20 ~ 30 % higher, than that for UB, in all experiments. Thermodynamic studies demonstrated that adsorption process was spontaneous with Gibb's free energy (${\Delta}G$) values, ranging between -5.211 and -7.175 kJ/mol for EMB, and -0.984 and -2.059 kJ/mol for UB, and endothermic with enthalpy (${\Delta}H$) value of 9.418 kJ/mol for EMB and 7.022 kJ/mol for UB. Adsorption kinetics was found to follow the pseudo-second order kinetics model, and its rate constant was 3.41 for EMB and $2.00g/mg{\cdot}min$ for UB. Adsorption equilibrium data for EMB were best represented by the Langmuir adsorption isotherm, and calculated maximum adsorption capacity was 2.768 mg/g. It was found that the best conditions for Zn removal of EMB within the range of operation used, were 3.125 g/L dose, 90 rpm intensity, 10 min contact time, pH 4, and 338 K. Therefore, EMB has good potential for adsorption of Zn.

Studies on the Development of Polymeric Flocculants of Chitosan System (Chitosan계 고분자 응집제 개발에 관한 연구)

  • Jung, Byung-Ok;Chung, Tak-Sang
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.451-456
    • /
    • 1998
  • By grafting acrylic acid, fumalic acid and maleic acid onto chitosan, graft copolymers, CsAa, CsFa and CsMa, respectively were prepared for potential uses as flocculants in waste water treatment. When 40 ppm of each grafted chitosan sample was added into the waste water, CsMa showed the best removal rate of COD and suspended solids(SS), followed by CsFa and CsAa and chitosan. The transmittance and removal rate of COD and SS were the highest at pH 5. All grafted chitosan exhibited better performance than chitosan itself, resulting from the amphiphilic property of grafted chitosan copolymer with carboxy groups.

  • PDF

Isolation and Identificatioh~ of a Phthalate Ester Degrading Bacterium and the Optimal Culture Conditions for Production of One Degrading Enzyme (프탈레이트 에스터 분해세균의 분리 및 분해효소의 최적 생성조건)

  • Kim, Byung-O;Kim, Ran-Sug;Jin, Ing-Nyol;Park, Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.6
    • /
    • pp.553-559
    • /
    • 1990
  • A strain degrading phthalate ester was isolated from a sludge of Taegu area and identified as a strain of Klebsiella. The optimum culture conditions for the protocatechuate dioxygenase production were also investigated. This strain produced the enzyme in question under the shaking cultivation at $30^{\circ}C$for the 48 hrs in the medium containing 0.1% protocatechuate as the sole carbon source, 0.1% ammonium sulfate and 0.1% yeast extract as the nitrogen source and mineral salt mixture of magnesium sulfate, sodium chloride, calcium chloride, ferric chloride, manganese sulfate, zinc sulfate and cupric sulfate. This enzyme was intracellularl j localized and probably linked to cell membrane, and induced by protocatechuate.

  • PDF

An Experimental Study on Wastewater Treatment by Modified Activated Sludge Process (변형된 활성슬러지공법의 폐수처리에 관한 실험적 연구)

  • 채수권;연기석
    • Water for future
    • /
    • v.22 no.1
    • /
    • pp.117-125
    • /
    • 1989
  • This study deals with the performance of an acivated sludge system which is modified by the researcher to function without any additional chemical or internal recyle in removing organics, nitrogen, and phosphorus from synthetic wastewater. To improve the nutrient removal efficiency, the researcher utilized the anoxic, anaerobic, and aerobic reactor sequences with a single sludge return, whiched to nitrification/denitrification and phosphorus release/overplus accumulation. A bench scale system was operated with a view to investigating the reaction characteristics of each reactor, and to measuring the biological kinetic coefficients(Y, $K_d$, k, $K_s$) for theremoval of COD in relation to the mean cell residence time at five different MLSS concentrations, 5000, 4200, 3300, 2600, and 1900 mg/l. The results of the research showed that organic substance and nutrient were removed simultaneously by this modified activated sludge process. And the process kad 66%-99% ortho-p removal efficiency.

  • PDF

The Removal of Organic Dye Waste using Natural Clay Minerals (천연산 점토광물을 이용한 폐-유기 염료 제거)

  • Park, Jung-Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.4
    • /
    • pp.321-327
    • /
    • 2006
  • red 1 and acid blue 92, anionic dyes, were removed from synthetic wastewater by the surfactant-modified clay minerals. Two different clays, such as Korean clay(M78) and Japanese clay(KJ) were treated with three different sulfactants, CTMA, DSDMA and TMSA. The surfactant-modified clay minerals such as M-1(CTMA), M-3(TMSA), KJ-1(CTMA) and KJ-3(TMSA), showed high removal efficiencies with dyes, while M-2(DSDMA) and KJ-2(DSDMA) could adsorb both dyes with relatively low efficiencies. Furthermore, almost 100% absorption of both dyes onto M-1(CTMA) and KJ-3(TMSA) revealed the possibility that these materials can be used for the removal of hazardous organic dyes from wastewater.