DOI QR코드

DOI QR Code

The Effect of Fixed Media and Recycling Ratio on Nutrients Removal in a Pilot-Scale Wastewater Treatment Unit

고정식 담체 유무와 반송비에 따른 소규모 하수처리 시스템 내 영양염류 제거 특성

  • Hwang, Jae-Hoon (Department of Environmental Engineering, Yonsei University) ;
  • Cho, Dong-Wan (Department of Environmental Engineering, Yonsei University) ;
  • Kim, Chung-Hwan (Water & Wastewater Research Center, Korea Institute of water and Environment) ;
  • Jeon, Byong-Hun (Department of Environmental Engineering, Yonsei University)
  • Received : 2013.01.23
  • Accepted : 2013.06.05
  • Published : 2013.06.30

Abstract

The effect of recycling ratio and fixed media on nitrate and phosphate removal was investigated in a pilot-scale wastewater treatment unit using synthetic wastewater. Addition of fixed media increased nitrate removal from 45 to 58% while no noticeable change was observed for Chemical Oxygen Demand (COD) and phosphate removal (<5%). Nitrate removal efficiency also enhanced (Ca 7%) when the influent wastewater flow was doubled (2Q), however phosphate removal was decreased from 40.9 to 26.6% with the increasing recycling rate. The attached biomass analysis showed the presence of bacteria (73.4 $mg/cm^2$) on the surface of added media in anoxic reactor. Pseudomonas aeruginosa a common denitrifying bacterium dominated the bacterial growth (58%) in the anoxic reactor which was determined using Fluorescence In Situ Hybridization (FISH) analysis.

소규모 하수처리시스템에 다양한 반송비와 고정식 담체를 적용하여 합성폐수에서 질소, 인의 제거를 검토하였다. 담체를 첨가 시 질소의 제거율은 40.1%에서 65.1%로 증가하였으나 COD와 인의 제거에는 영향이 없었다(<5%). 반송을 통해 유량을 2배(2Q)로 증가시킨 경우 질소의 제거율은 7% 정도가 증가하였으나, 인 제거율은 반송비가 증가됨에 따라 31.8에서 26.6%로 감소하였다. 무산소조에서 담체에 부착된 미생물은 약 73.4 $mg/cm^2$로 존재하였으며, FISH분석 결과 탈질 미생물인 Pseudomonas aeruginosa 존재 (약 58%)를 확인하였다.

Keywords

References

  1. Kim, Y. G. and Cho, I. H., "A study on the removal of nitrogen and phosphorus of municipal wastewater with biological coated media," Kor. J. Environ. Health, 32(1), 27-35(2006).
  2. Fux, C., Boehler, M., Huber, P., Brunner, I. and Siegrist, H., "Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant," J. Biotechnol., 99, 295-306(2002). https://doi.org/10.1016/S0168-1656(02)00220-1
  3. Anh, Y. H., "Sustainable nitrogen elimination biotechnologies: A review," Proc. Biochem., 41, 1709-1721(2006). https://doi.org/10.1016/j.procbio.2006.03.033
  4. Kim, A. R., Kim, H. C., Seo, D. C., Park, J. H., Kim, S. H., Lee, S. T., Jeong, T. U., Choi, J. H., Kim, H., Cho, J. S. and Heo. J. S., "Selection of optimum filter media in small-scale livestock wastewater treatment apparatus by natural purification method," Kor. J. Soil Sci. Fert., 44, 285-292(2011). https://doi.org/10.7745/KJSSF.2011.44.2.285
  5. Jang, A., Kim, H. S. and Kim I. S., "Effect of nitrate and nitrite load on denitrification reaction in anoxic biofilm reactor," J. Kor. Soc. Environ. Eng., 22(9), 1617-1625(2000).
  6. Yoon, C. H., Kim, M. S. and Kim, S. H., "Characteristics of biological nitrogen removal for low C/N ratio municipal wastewater using methanol as an external carbon source in $A_2O$ fluidized media process," J. Kor. Soc. Environ. Eng., 28(6), 687-692(2006).
  7. Jung, Y. J., Min, K. S., Lee, J. K. and Lim, K. H., "Evaluation of sewage treatment with surface modified waste-tire media using batch activated sludge system," J. Kor. Soc. Environ. Eng., 25(6), 682-687(2003).
  8. Seon, Y. H., "A study on removal of organics, nitrogen and phosphorus of domestic wastewater in pilot-scale upflow packed bed column reactor," Kor. J. Biotechnol. Bioeng., 22(4), 191-196(2007).
  9. Park, W. and Ganczarczyk, J. J., "Gravity separation of biomass washed-out from an aerated submerged filter," Environ. Technol., 15, 945-955(1994). https://doi.org/10.1080/09593339409385502
  10. APHA, AWWA, and WPCF, "Standard Methods for the Examination of Water and Wastewater," 17th edition, American Public Health Association, Washington, D. C., (1989).
  11. Amann, R. I., Fuch, B. M. and Behrens, S., "The identification of microorganisms by fluorescence in situ hybridization," Curr. Opin. Microbiol., 12(1), 231-236(2001).
  12. Blackburne, R. Yuan, Z. and Keller, J., "Kinetic characterization of an enriched Nitrospira culture with comparison to Nitrobacter," Water Res., 41(14), 3033-3042(2007). https://doi.org/10.1016/j.watres.2007.01.043
  13. Kim, D. J., Kwon, H. J., Yoon, J. Y. and Cha, G. C., "Nitrite accumulation on characteristics and quantitative Analyses of Nitrifying and denitrifying bacteria in a sequencing batch reactor," J. Kor. Soc. Water Qual., 24(3), 383-390(2008).
  14. Kim, J. H., Chen, M., Kishida, N. and Sudo, R., "Integrated real-time control strategy for nitrogen removal in swine wastewater treatment using sequencing batch reactors," Water Res., 38(14-15), 3340-3348(2004). https://doi.org/10.1016/j.watres.2004.05.006
  15. St. John, R. T. and Hollocher, T. C., "Nitrogen 15 Tracer Studies on the Pathway of Denitrification in Pseudomonas aeruginosa," J. Biol. Chem., 252(1), 212-218(1977).
  16. Gaston, B., Ratjen, F., Vaughan, J. W., Malhotra, N. R., Canady, R. G., Snyder, A. H., Hunt, J. F., Gaertig, S. and Golderg, J. B., "Nitrogen Redox Balance in the Cystic Fibrosis Airway: Effects of Antipseudomonal Therapy," Am. J Resp. Crit. Care., 165(3), 387-390(2002). https://doi.org/10.1164/ajrccm.165.3.2106006
  17. Kim, D. J. and Kim, S. H., "Effect of nitrite concentration on the distribution and competition of nitrite-oxidizing bacteria in nitratation reactor systems and their kinetic characteristics," Water Res., 40(5), 887-894(2006). https://doi.org/10.1016/j.watres.2005.12.023
  18. Kim, D. J. and Seo, D. W., "Selective enrichment and granulation of ammonia oxidizers in a sequencing batch airlift reactor," Proc. Biochem., 41(5), 1055-1062(2006). https://doi.org/10.1016/j.procbio.2005.11.018
  19. Ahn, J., Daidou, T., Tsuneda, S. and Hirata A., "Characterization of denitrifying phosphate-accumulating organisms cultivated under different electron acceptor conditions using polymerase chain reaction-denaturing gradient gel electrophoresis assay," Water Res., 36(2), 403-412(2002). https://doi.org/10.1016/S0043-1354(01)00222-6
  20. Chuang, S. H., Ouyang, C. F. and Yuang, H. C., "Effects of SRT and DO on nutrient removal in a combined AS-biofilm process," Water Sci. Technol., 36, 19-27(1997).
  21. Zhang, J., Zhang, Y., Liu. W., Quan, X., Chen, S., Zhao, H., Jin, Y. and Zhang, W., "Evaluation of removal efficiency for acute toxicity and genotoxicity on zebrafish in anoxic-oxic process from selected municipal wastewater treatment plants," Chemosphere, doi.org/10.1016/j.chemosphere(2012).
  22. Asadi, A., Zinatizadeh, A. A. L. and Sumathi, S., "Simultaneous removal of carbon and nutrients from an industrial estate wastewater in a single up-flow aerobic/anoxic sludge bed (UAASB) bioreactor," Water Res., 46(15), 4587-4598(2012). https://doi.org/10.1016/j.watres.2012.06.029
  23. Chuang, S. H., Ouyang, C. F. and Wang, Y. B., "Kinetic competition between phosphorous release and denitrification on sludge under anoxic condition," Water Res., 30, 2961-2968(1996). https://doi.org/10.1016/S0043-1354(96)00201-1