DOI QR코드

DOI QR Code

Supercritical Dyeing Technology

초임계 염색 기술

  • Kim, Taewan (Seoul National University School of Chemical and Biological Engineering, Institute of Chemical Process) ;
  • Park, Geonhwan (Seoul National University School of Chemical and Biological Engineering, Institute of Chemical Process) ;
  • Kong, Wonbae (Seoul National University School of Chemical and Biological Engineering, Institute of Chemical Process) ;
  • Lee, Youn-Woo (Seoul National University School of Chemical and Biological Engineering, Institute of Chemical Process)
  • 김태완 (서울대학교 화학생물공학부, 화학공정신기술연구소) ;
  • 박건환 (서울대학교 화학생물공학부, 화학공정신기술연구소) ;
  • 공원배 (서울대학교 화학생물공학부, 화학공정신기술연구소) ;
  • 이윤우 (서울대학교 화학생물공학부, 화학공정신기술연구소)
  • Received : 2017.12.18
  • Accepted : 2017.12.28
  • Published : 2018.03.30

Abstract

As the social demands for environmental pollution increase and regulations on the dyeing process wastewater are strengthened, supercritical dyeing process has been attracting attention as an alternative technology to reduce wastewater and energy consumption. In the supercritical dyeing process where carbon dioxide is used as a solvent instead of water as a solvent, there is no wastewater generated. The unfixed dyes can be reused later which makes the process environment-friendly. Also, after dyeing process, dried textiles can be obtained without additional drying process, which makes the process energy efficient. In this article, we have summarized the development of the supercritical dyeing process along with the research in Korea today and compared the principle of supercritical dyeing process with conventional dyeing process. To further explain the principle, studies of the distribution factor and mass transfer of dyes in supercritical carbon dioxide and fibers, as well as solubility between supercritical $CO_2$ and dyes are discussed. The dynamic behavior of dyes in supercritical dyeing apparatus and summary of the supercritical dyeing facilities developed around the world are also discussed. Finally, we suggest the direction of research and development for optimization of supercritical dyeing process and application to synthetic fibers and natural fibers except for polyester.

환경 오염에 대한 사회적 요구가 증가하고 염색 공정 폐수 배출에 대한 규제가 강화되면서 기존 수계 염색에서 발생하는 다량의 폐수와 에너지 낭비를 근본적으로 해결하기 위한 대안으로 초임계 염색 공정이 주목 받고 있다. 초임계 염색 공정에서는 기존 수계 염색에서 염색 용매인 물 대신 이산화탄소만을 사용하기 때문에 발생하는 폐수가 전혀 없고 미 고착 염료와 이산화탄소를 재사용 할 수 있다는 점에서 친환경적이다. 또한 염색 이후 추가적인 건조공정 없이 건조된 섬유를 얻을 수 있어 에너지 소비를 줄일 수 있다. 본 논문에서는 먼저 초임계 염색 공정의 발전배경과 현재 우리나라에서의 연구를 정리하였으며 초임계 염색의 원리와 기존 수계염색과의 장단점을 비교 설명하였다. 원리를 보다 자세히 설명하기 위해 초임계 이산화탄소와 염료 사이의 용해도를 비롯해 초임계 이산화탄소와 섬유에서 염료의 분배계수 및 물질전달 연구를 정리하였고, 현재 연구의 한계점과 연구방향을 제시하였다. 또한 초임계 염색 설비 내에서의 염료의 동적거동에 대하여 토의하였으며 전 세계적으로 개발된 초임계 염색 설비를 정리하였다. 마지막으로 현재 초임계 염색 공정의 최적화와 폴리에스터를 제외한 다른 합성섬유와 천연섬유에 적용하기 위해 필요한 연구개발 방향을 제시하였다.

Keywords

References

  1. http://www.greenpeace.org/eastasia/campaigns/toxics/work/detox/. (Accessed: 13th December 2017)
  2. http://www.roadmaptozero.com/. (Accessed: 13th December 2017)
  3. http://www.controlunion.co.kr/portfolio_page/sac-higg-index-2-0/. (Accessed: 13th December 2017)
  4. Chang, K.-H., Bae, H.-K., and Shim, J.-J., "Dyeing of Pet Textile Fibers and Films in Supercritical Carbon Dioxide," Korean J. Chem. Eng., 13, 310-316 (1996). https://doi.org/10.1007/BF02705955
  5. http://news.nike.com/news/nike-colordye. (Accessed: 26th December 2017)
  6. Ram, B., and Gupta, J.-J. S., "Solubility in Supercritical Carbon Dioxide," (CRC Press, 2007).
  7. Gao, D., Yang, D., Cui, H., Huang, T., and Lin, J., "Synthesis and Measurement of Solubilities of Reactive Disperse Dyes for Dyeing Cotton Fabrics in Supercritical Carbon Dioxide," Ind. Eng. Chem. Res., 53, 13862-13870 (2014). https://doi.org/10.1021/ie5025497
  8. Tamura, K., Alwi, R. S., Tanaka, T., and Shimizu, K., "Solubility of 1-aminoanthraquinone and 1-nitroanthraquinone in Supercritical Carbon Dioxide," J. Chem. Thermodyn., 104, 162-168 (2017). https://doi.org/10.1016/j.jct.2016.09.032
  9. Van Leer, R. A., and Paulaitis, M. E., "Solubilities of Phenol and Chlorinated Phenols in Supercritical Carbon Dioxide," J. Chem. Eng. Data, 25, 257-259 (1980). https://doi.org/10.1021/je60086a020
  10. McHugh, M. A., and Krukonis, V. J. in (Butterworth-Heinemann, 1994).
  11. Iwai, Y., Uno, M., Nagano, H., and Arai, Y., "Measurement of Solubilities of Palmitic Acid In Supercritical Carbon Dioxide and Entrainer Effect of Water by FTIR Spectroscopy," J. Supercrit. Fluids, 28, 193-200 (2004). https://doi.org/10.1016/S0896-8446(03)00013-5
  12. West, B. L., Kazarian, S. G., Vincent, M. F., Brantley, N. H., and Eckert, C. A., "Supercritical Fluid Dyeing of PMMA Films with Azo-Dyes," J. Appl. Polym. Sci., 69, 911-919 (1998). https://doi.org/10.1002/(SICI)1097-4628(19980801)69:5<911::AID-APP10>3.0.CO;2-R
  13. Ngo, T. T., Liotta, C. L., Eckert, C. A., and Kazarian, S. G., "Supercritical Fluid Impregnation of Different Azo-Dyes into Polymer: In Situ UV/Vis Spectroscopic Study," J. Supercrit. Fluids, 27, 215-221 (2003). https://doi.org/10.1016/S0896-8446(02)00239-5
  14. Gordillo, M. D., Pereyra, C., and de la Ossa, E. J. M., "Measurement and Correlation of Solubility of Disperse Blue 14 in Supercritical Carbon Dioxide," J. Supercrit. Fluids, 27, 31-37 (2003). https://doi.org/10.1016/S0896-8446(02)00215-2
  15. Banchero, M., Ferri, A., Manna, L., and Sicardi, S., "Solubility of Disperse Dyes in Supercritical Carbon Dioxide and Ethanol," Fluid Phase Equilib., 243, 107-114 (2006). https://doi.org/10.1016/j.fluid.2006.02.010
  16. Bae, H.-K., Jeon, J.-H., and Lee, H., "Influence of Co-Solvent on Dye Solubility in Supercritical Carbon Dioxide," Fluid Phase Equilib., 222-223, 119-125 (2004). https://doi.org/10.1016/j.fluid.2004.06.009
  17. Cabral, V. F., Santos, W. L. F., Muniz, E. C., Rubira, A. F., and Cardozo-Filho, L., "Correlation of Dye Solubility in Supercritical Carbon Dioxide," J. Supercrit. Fluids, 40, 163-169 (2007). https://doi.org/10.1016/j.supflu.2006.05.004
  18. Sung, H.-D., and Shim, J.-J., "Solubility of C. I. Disperse Red 60 and C. I. Disperse Blue 60 in Supercritical Carbon Dioxide," J. Chem. Eng. Data, 44, 985-989 (1999). https://doi.org/10.1021/je990018t
  19. Jouyban, A., Chan, H.-K., and Foster, N. R., "Mathematical Representation of Solute Solubility in Supercritical Carbon Dioxide Using Empirical Expressions," J. Supercrit. Fluids, 24, 19-35 (2002). https://doi.org/10.1016/S0896-8446(02)00015-3
  20. Tabaraki, R., Khayamian, T., and Ensafi, A. A., "Wavelet Neural Network Modeling in QSPR for Prediction of Solubility of 25 Anthraquinone Dyes at Different Temperatures and Pressures in Supercritical Carbon Dioxide," J. Mol. Graph. Model., 25, 46-54 (2006). https://doi.org/10.1016/j.jmgm.2005.10.012
  21. Tabaraki, R., Khayamian, T., and Ensafi, A. A., "Solubility Prediction of 21 Azo Dyes in Supercritical Carbon Dioxide Using Wavelet Neural Network," Dye. Pigment., 73, 230-238 (2007). https://doi.org/10.1016/j.dyepig.2005.12.003
  22. Tarasova, A., Burden, F., Gasteiger, J., and Winkler, D. A., "Robust Modelling of Solubility in Supercritical Carbon Dioxide Using Bayesian Methods," J. Mol. Graph. Model., 28, 593-597 (2010). https://doi.org/10.1016/j.jmgm.2009.12.004
  23. Park, S.-C., Tuma, D., Kim, S., Lee, Y. R., and Shim, J.-J., "Sorption of C. I. Disperse Red 60 in Polystyrene and PMMA Films and Polyester and Nylon 6 Textiles in the Presence of Supercritical Carbon Dioxide," Korean J. Chem. Eng., 27, 299-309 (2010). https://doi.org/10.1007/s11814-010-0098-6
  24. Von Schnitzler, J., and Eggers, R., "Mass Transfer in Polymers in a Supercritical $CO_2$-Atmosphere," J. Supercrit. Fluids, 16, 81-92 (1999). https://doi.org/10.1016/S0896-8446(99)00020-0
  25. Bach, E., Cleve, E., and Schollmeyer, E. Past, "Present and Future of Supercritical Fluid Dyeing Technology," Rev. Prog. Color. Relat. Top., 32, 88-102 (2002). https://doi.org/10.1111/j.1478-4408.2002.tb00253.x
  26. Li, Z.-Y., Meng, T.-Y., Liu, X.-W., Xia, Y.-J., and Hu, D.-P., "Phase Equilibrium Characteristics of Supercritical $CO_2$/Poly (ethylene terephthalate) Binary System," J. Appl. Polym. Sci., 109, 2836-2841 (2008). https://doi.org/10.1002/app.28323
  27. Hirogaki, K., Tabata, I., Hisada, K., and Hori, T., "An Investigation of the Interaction of Supercritical Carbon Dioxide with Poly(ethylene terephthalate) and the Effects of Some Additive Modifiers on the Interaction," J. Supercrit. Fluids, 36, 166-172 (2005). https://doi.org/10.1016/j.supflu.2005.05.004
  28. Hou, A., Xie, K., and Dai, J., "Effect of Supercritical Carbon Dioxide Dyeing Conditions on the Chemical and Morphological Changes of Poly(ethylene terephthalate) Fibers," J. Appl. Polym. Sci., 92, 2008-2012 (2004). https://doi.org/10.1002/app.20066
  29. Fleming, O. S., Kazarian, S. G., Bach, E., and Schollmeyer, E., "Confocal Raman Study of Poly(ethylene terephthalate) Fibres Dyed in Supercritical Carbon Dioxide: Dye Diffusion and Polymer Morphology," Polymer, 46, 2943-2949 (2005). https://doi.org/10.1016/j.polymer.2005.02.067
  30. Fleming, O. S., Chan, K. L. A., and Kazarian, S. G., "FT-IR Imaging and Raman Microscopic Study of Poly(ethylene terephthalate) Film Processed with Supercritical $CO_2$," Vib. Spectrosc., 35, 3-7 (2004). https://doi.org/10.1016/j.vibspec.2003.10.003
  31. Schmidt, A., Bach, E., and Schollmeyer, E., "Damage to Natural and Synthetic Fibers Treated in Supercritical Carbon Dioxide at 300 bar and Temperatures up to $160^{\circ}C$," Text. Res. J., 72, 1023-1032 (2002). https://doi.org/10.1177/004051750207201115
  32. Bach, E., Cleve, E., Schollmeyer, E., Nuennerich, P., Dierkes, H., Luetge, C., and Schueler, A., "Experience with the Uhde $CO_2$-Dyeing Plant on a Technical Scale: Part 3: Quality of Polyester Dyed in Supercritical Carbon Dioxide," Melliand Int., 10, 66-69 (2004).
  33. Montero, G., Hinks, D., and Hooker, J., "Reducing Problems of Cyclic Trimer Deposits in Supercritical Carbon Dioxide Polyester Dyeing Machinery," J. Supercrit. Fluids, 26, 47-54 (2003). https://doi.org/10.1016/S0896-8446(02)00187-0
  34. Kraan, M. Van Der, Cid, M. V. F., Woerlee, G. F., Veugelers, W. J. T., and Witkamp, G.-J., "Equilibrium Study on the Disperse Dyeing of Polyester Textile in Supercritical Carbon Dioxide," Text. Res. J., 77, 550-558 (2007). https://doi.org/10.1177/0040517507077483
  35. Bao, P., and Dai, J., "Relationships between the Solubility of C. I. Disperse Red 60 and Uptake on PET in Supercritical $CO_2$," J. Chem. Eng. Data, 50, 838-842 (2005). https://doi.org/10.1021/je0496847
  36. Park, M.-W., and Bae, H.-K., "Dye Distribution in Supercritical Dyeing with Carbon Dioxide," J. Supercrit. Fluids, 22, 65-73 (2002). https://doi.org/10.1016/S0896-8446(01)00102-4
  37. Ferri, A., Banchero, M., Manna, L., and Sicardi, S., "Dye Uptake and Partition Ratio of Disperse Dyes between a PET Yarn and Supercritical Carbon Dioxide," J. Supercrit. Fluids, 37, 107-114 (2006). https://doi.org/10.1016/j.supflu.2005.07.001
  38. Tabata, I., Lyu, J., Cho, S., Tominaga, T., and Hori, T., "Relationship between the Solubility of Disperse Dyes and the Equilibrium Dye Adsorption in Supercritical Fluid Dyeing," Color. Technol., 117, 346-351 (2001). https://doi.org/10.1111/j.1478-4408.2001.tb00088.x
  39. Banchero, M., Ferri, A., and Manna, L., "The Phase Partition of Disperse Dyes in the Dyeing of Polyethylene Terephthalate with a Supercritical $CO_2$/Methanol Mixture," J. Supercrit. Fluids, 48, 72-78 (2009). https://doi.org/10.1016/j.supflu.2008.09.005
  40. Banchero, M., Manna, L., and Ferri, A., "Effect of the Addition of a Modifier in the Supercritical Dyeing of Polyester," Color. Technol., 126, 171-175 (2010). https://doi.org/10.1111/j.1478-4408.2010.00243.x
  41. Banchero, M., and Ferri, A., "Simulation of Aqueous and Supercritical Fluid Dyeing of a Spool of Yarn," J. Supercrit. Fluids, 35, 157-166 (2005). https://doi.org/10.1016/j.supflu.2004.12.009
  42. Fleming, O. S., Stepanek, F., and Kazarian, S. G., "Dye Diffusion in Polymer Films Subjected to Supercritical $CO_2$: Confocal Raman Microscopy and Modelling," Macromol. Chem. Phys., 206, 1077-1083 (2005). https://doi.org/10.1002/macp.200500075
  43. Shibusawa, T., "Diffusion of Disperse Dyes on Nylon 6," Text. Res. J., 66, 421-428 (1996). https://doi.org/10.1177/004051759606600701
  44. Sicardi, S., Manna, L., and Banchero, M., "Comparison of Dye Diffusion in Poly(ethylene terephthalate) Films in the Presence of a Supercritical or Aqueous Solvent," Ind. Eng. Chem. Res., 39, 4707-4713 (2000). https://doi.org/10.1021/ie000125c
  45. Hou, A., and Dai, J., "Kinetics of Dyeing of Polyester with CI Disperse Blue 79 in Supercritical Carbon Dioxide," Color. Technol., 121, 18-20 (2005). https://doi.org/10.1111/j.1478-4408.2005.tb00242.x
  46. Banchero, M., "Supercritical Fluid Dyeing of Synthetic and Natural Textiles - A Review," Color. Technol., 129, 2-17 (2013). https://doi.org/10.1111/cote.12005
  47. Hou, A., Chen, B., Dai, J., and Zhang, K., "Using Supercritical Carbon Dioxide as Solvent to Replace Water in Polyethylene Terephthalate (PET) Fabric Dyeing Procedures," J. Clean. Prod., 18, 1009-1014 (2010). https://doi.org/10.1016/j.jclepro.2010.03.001
  48. Banchero, M., Sicardi, S., Ferri, A., and Manna, L., "Supercritical Dyeing of Textiles - From the Laboratory Apparatus to the Pilot Plant," Text. Res. J., 78, 217-223 (2008). https://doi.org/10.1177/0040517507081297
  49. Kraan, M. van der., "Process and Equipment Development for Textile Dyeing in Supercritical Carbon Dioxide," Delft University of Technology, the Netherlands, 2005.
  50. Long, J.-J., Ma, Y.-Q., and Zhao, J.-P., "Investigations on the Level Dyeing of Fabrics in Supercritical Carbon Dioxide," J. Supercrit. Fluids, 57, 80-86 (2011). https://doi.org/10.1016/j.supflu.2011.02.007
  51. Dai, G. H., and Y. X., and J., "Dyeing of PET Yarn in Supercritical $CO_2$: Pilot Plant Experiments," International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, 1097-1100 (2011).
  52. Hendrix, W. A., "Progress in Supercritical $CO_2$ Dyeing," J. Ind. Text., 31, 43-56 (2001).
  53. Huang, G., Dong, F. C., Wang, J. H., and Jia, Y. T., "Establishment of Database of Color Matching System for Supercritical $CO_2$ Dyeing," Eco-Dyeing, Finishing and Green Chem., 441, 708-712 (2012).
  54. http://www.dyecoo.com/pdfs/press-release-nike.pdf. (Accessed: 13th December 2017)
  55. Liao, S. K., "Dyeing Nylon-6,6 with Some Hydrophobic Reactive Dyes by Supercritical Processing," J. Polym. Res., 11, 285-291 (2005). https://doi.org/10.1007/s10965-005-4046-9
  56. van der Kraan, M., Cid, M. V. F., Woerlee, G. F., Veugelers, W. J. T., and Witkamp, G. J., "Dyeing of Natural and Synthetic Textiles in Supercritical Carbon Dioxide with Disperse Reactive Dyes," J. Supercrit. Fluids, 40, 470-476 (2007). https://doi.org/10.1016/j.supflu.2006.07.019
  57. Schmidt, A., Bach, E., and Schollmeyer, E., "Supercritical Fluid Dyeing of Cotton Modified with 2,4,6-trichloro-1,3,5-triazine," Color. Technol., 119, 31-36 (2003). https://doi.org/10.1111/j.1478-4408.2003.tb00148.x

Cited by

  1. 초임계 CO2 및 수계 염색방법이 적용된 PET 섬유의 세탁견뢰도 vol.32, pp.4, 2018, https://doi.org/10.5764/tcf.2020.32.4.208
  2. A Dissolution Kinetic Study of Disperse Dye in Supercritical Carbon Dioxide to Design an Efficient Supercritical Dyeing Process vol.9, pp.6, 2018, https://doi.org/10.3390/pr9060977