• 제목/요약/키워드: 합성곱 인공신경망

검색결과 125건 처리시간 0.029초

다양한 합성곱 신경망 방식을 이용한 모바일 기기를 위한 시작 단어 검출의 성능 비교 (Performance comparison of wake-up-word detection on mobile devices using various convolutional neural networks)

  • 김상홍;이보원
    • 한국음향학회지
    • /
    • 제39권5호
    • /
    • pp.454-460
    • /
    • 2020
  • 음성인식 기능을 제공하는 인공지능 비서들은 정확도가 뛰어난 클라우드 기반의 음성인식을 통해 동작한다. 클라우드 기반의 음성인식에서 시작 단어 인식은 대기 중인 기기를 활성화하는 데 중요한 역할을 한다. 본 논문에서는 공개 데이터셋인 구글의 Speech Commands 데이터셋을 사용하여 스펙트로그램 및 멜-주파수 캡스트럼 계수 특징을 입력으로 하여 모바일 기기에 대응한 저 연산 시작 단어 검출을 위한 합성곱 신경망의 성능을 비교한다. 본 논문에서 사용한 합성곱 신경망은 다층 퍼셉트론, 일반적인 합성곱 신경망, VGG16, VGG19, ResNet50, ResNet101, ResNet152, MobileNet이며, MobileNet의 성능을 유지하면서 모델 크기를 1/25로 줄인 네트워크도 제안한다.

이미지의 피사계 심도를 빠르게 계산하기 위한 쿼드트리 기반의 합성곱 신경망 최적화 (Quadtree-based Convolutional Neural Network Optimization to Quickly Calculate the Depth of Field of an Image)

  • 김동희;김수균;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.257-260
    • /
    • 2021
  • 본 논문에서는 카메라의 포커싱과 아웃포커싱에 의해 이미지에서 뿌옇게 표현되는 DoF(Depth of field, 피사계 심도) 영역을 쿼드트리(Quadtree) 기반의 합성곱 신경망을 통해 빠르게 찾는 방법을 제안한다. 우리의 접근 방식은 RGB채널기반의 상호-상관 필터를 이용하여 DoF영역을 이미지로부터 효율적으로 분류하고, 적응형 트리인 쿼드트리를 기반으로 유의미한 영역만을 분류한다. 이 과정에서 손실 없이 온전하게 DoF영역을 추출하기 위한 필터링 과정을 거친다. 이러한 과정에서 얻어진 이미지 패치들은 전체 이미지에 비해 적은 영역으로 나타나며, 이 적은 개수의 패치들을 이용하여 네트워크 단계에서 사용할 이미지-DoF가중치 맵 데이터 쌍을 설정한다. 네트워크 과정에서 학습할 때 사용되는 데이터는 이미지와 상호-상관 필터 기반으로 추출된 DoF 가중치 맵을 이용한다. 본 논문에서 제안하는 쿼드트리 기반 합성곱 신경망은 이미지로부터 포커싱과 아웃포커싱된 DoF영역을 자동으로 추출하는 과정을 학습시키기 위해 사용된다. 결과적으로 학습에 필요한 데이터 영역이 줄어듦으로써 학습 시간과 메모리를 절약했으며, 테스트 결과로 얻은 DoF 가중치 이미지는 입력 이미지에서 DoF영역을 더욱더 빠른 시간 내에 찾아낸다.

  • PDF

3차원 메쉬의 효율적인 학습을 위한 삼각형의 면적과 변화를 이용한 로컬 특징맵 (Local Feature Map Using Triangle Area and Variation for Efficient Learning of 3D Mesh)

  • 나홍은;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.573-576
    • /
    • 2022
  • 본 논문에서는 삼각형 구조로 구성된 3차원 메쉬(Mesh)에서 합성곱 신경망(Convolutional Neural Network, CNN)의 정확도를 개선시킬 수 있는 새로운 학습 표현 기법을 제시한다. 우리는 메쉬를 구성하고 있는 삼각형의 넓이와 그 로컬 특징을 기반으로 학습을 진행한다. 일반적으로 딥러닝은 인공신경망을 수많은 계층 형태로 연결한 기법을 말하며, 주요 처리 대상은 오디오 파일과 이미지이었다. 인공지능에 대한 연구가 지속되면서 3차원 딥러닝이 도입되었지만, 기존의 학습과는 달리 3차원 학습은 데이터의 확보가 쉽지 않다. 혼합현실과 메타버스 시장으로 인해 3차원 모델링 시장이 증가가 하면서 기술의 발전으로 데이터를 획득할 수 있는 방법이 생겼지만, 3차원 데이터를 직접적으로 학습 표현하는 방식으로 적용하는 것은 쉽지 않다. 그렇기 때문에 본 논문에서는 산업 현장에서 사용되는 데이터인 삼각형 메쉬 구조를 바탕으로 기존 방법보다 정확도가 높은 학습 기법을 제안한다.

  • PDF

3차원 삼각형 메쉬를 정확하고 효율적으로 학습하기 위한 CNN 아키텍처 (CNN Architecture for Accurately and Efficiently Learning a 3D Triangular Mesh)

  • 나홍은;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.369-372
    • /
    • 2023
  • 본 논문에서는 삼각형 구조로 구성된 3차원 메쉬(Mesh)에서 합성곱 신경망(Convolution Neural Network, CNN)을 응용하여 정확도가 높은 새로운 학습 표현 기법을 제시한다. 우리는 메쉬를 구성하고 있는 폴리곤의 edge와 face의 로컬 특징을 기반으로 학습을 진행한다. 일반적으로 딥러닝은 인공신경망을 수많은 계층 형태로 연결한 기법을 말하며, 주요 처리 대상은 1, 2차원 데이터 형태인 오디오 파일과 이미지였다. 인공지능에 대한 연구가 지속되면서 3차원 딥러닝이 도입되었지만, 기존의 학습과는 달리 3차원 딥러닝은 데이터의 확보가 쉽지 않다. 혼합현실과 메타버스 시장의 확대로 인해 3차원 모델링 시장이 증가하고, 기술의 발전으로 데이터를 획득할 수 있는 방법이 생겼지만, 3차원 데이터를 직접적으로 학습에 이용하는 방식으로 적용하는 것은 쉽지 않다. 그렇게 때문에 본 논문에서는 산업 현장에서 이용되는 데이터인 메쉬 구조를 폴리곤의 최소 단위인 삼각형 형태로 구성하여 학습 데이터를 구성해 기존의 방법보다 정확도가 높은 학습 기법을 제안한다.

  • PDF

합성곱 신경망 기반 저조도영상의 반사 영상 생성 (Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network)

  • 이승수;최창열;김만배
    • 방송공학회논문지
    • /
    • 제24권4호
    • /
    • pp.623-632
    • /
    • 2019
  • 저조도 영상의 개선을 위해서 밝기 및 대조 개선, 조명 성분 감쇄 등의 다양한 연구가 진행됐다. 기존의 hand-crafted 방법에서 인공신경망으로 기존 기법들을 대체하는 연구가 최근에 진행 중이다. 본 논문에서는 조명 광원이 존재하는 저조도 영상으로부터 조명 성분을 감쇄하고, 반사 성분만을 생성하는 기법을 합성곱 신경망으로 대체하는 방법을 제안한다. 실험에서는 102장의 저조도 영상으로 학습시킨 합성곱 신경망으로 만족스러운 반사 영상을 생성하였다.

CNN에서의 DropOut과 DropConnect에 대한 성능 비교 (Performance Comparison of DropOut and DropConnect in CNN)

  • 장윤석;임현일
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.464-466
    • /
    • 2019
  • CNN 은 합성곱 연산을 사용하는 인공신경망의 한 종류이다. 이러한 인공 신경망에서는 훈련 데이터에 대한 과도한 학습으로 인해 시험 데이터에 제대로 반응하지 못하는 오버피팅이 발생할 우려가 있다. 이를 해결하기 위해 DropOut 과 DropConnect 를 사용할 수 있다. 본 논문에서는 DropOut 과 DropConnect 를 통한 학습 정도를 실험을 통해서 비교해보고, 인공 신경망에서 이 방법의 효과를 살펴본다.

합성곱 신경망 기반의 인공지능 FPGA 칩 구현 (A Realization of CNN-based FPGA Chip for AI (Artificial Intelligence) Applications)

  • 윤영
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 추계학술대회
    • /
    • pp.388-389
    • /
    • 2022
  • 최근 인공지능 분야는 자율주행, 로봇 및 스마트 통신등 다양한 분야에 응용되고 있다. 현재의 인공지능 응용분야는 파이썬을 기반으로 한 tensor flow를 이용하는 소프트웨어 방식을 이용하고 있으며, 프로세서로는 PC의 그래픽 카드 내부에 존재하는 GPU (Graphics Processing Unit)를 이용하고 있다. 그러나 GPU 기반의 소프트웨어 방식은 하드웨어를 변경할 수 없다는 문제점을 가지고 있다. 이러한 문제점으로 인해 높은 수준의 판단이나 작업을 요구하는 경우에는 이에 적합한 높은 사양의 GPU가 필요하며, 이러한 경우에는 인공지능 작업을 처리하는 그래픽 카드로 교체해야 한다. 이러한 문제점을 해결하기 위해 본 연구에서는 HDL (Hardware Description Language)을 이용하여 반도체 내부의 회로를 변경할 수 있는 FPGA (Field Programmable Gate Array)를 기반으로 한 신경망 회로를 이용하여 합성곱 신경망 기반의 인공지능 시스템을 구현하고자 한다.

  • PDF

그래프 합성곱 신경망에 대한 기울기(Gradient) 기반 설명 기법 (A Gradient-Based Explanation Method for Graph Convolutional Neural Networks)

  • 김채현;이기용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.670-673
    • /
    • 2022
  • 설명가능한 인공지능은 딥러닝과 같은 복잡한 모델에서 어떠한 원리로 해당 결과를 도출해냈는지에 대한 설명을 함으로써 구축된 모델을 이해할 수 있도록 설명하는 기술이다. 최근 여러 분야에서 그래프 형태의 데이터들이 생성되고 있으며, 이들에 대한 분류를 위해 다양한 그래프 신경망들이 사용되고 있다. 본 논문에서는 대표적인 그래프 신경망인 그래프 합성곱 신경망(graph convolutional network, GCN)에 대한 설명 기법을 제안한다. 제안 기법은 주어진 그래프의 각 노드를 GCN을 사용하여 분류했을 때, 각 노드의 어떤 특징들이 분류에 가장 큰 영향을 미쳤는지를 수치로 알려준다. 제안 기법은 최종 분류 결과에 영향을 미친 요소들을 gradient를 통해 단계적으로 추적함으로써 각 노드의 어떤 특징들이 분류에 중요한 역할을 했는지 파악한다. 가상 데이터를 통한 실험을 통해 제안 방법은 분류에 가장 큰 영향을 주는 노드들의 특징들을 실제로 정확히 찾아냄을 확인하였다.

완전 합성곱 신경망을 활용한 자동 포트홀 탐지 기술의 개발 및 평가 (Development and Evaluation of Automatic Pothole Detection Using Fully Convolutional Neural Networks)

  • 전찬준;심승보;강성모;류승기
    • 한국ITS학회 논문지
    • /
    • 제17권5호
    • /
    • pp.55-64
    • /
    • 2018
  • 운전자의 안전사고에 직접적인 원인이 되고, 차량 파손을 유발시켜 재산상의 피해를 발생시키고 있는 포트홀을 완전 합성곱 신경망 기반의 자동으로 탐지하는 기법을 본 논문에서는 제안한다. 먼저, 실제 국내 도로를 주행하면서 차량에 설치된 카메라를 통하여 학습 데이터셋을 수집하고, 완전 합성곱 신경망 구조를 활용하여 의미론적 분할 형태로 신경망을 학습하였다. 어두운 환경에서 강건한 성능을 보이기 위하여 학습 데이터셋을 밝기에 따라서 증강하여 총 30,000장의 이미지를 학습하였다. 또한, 제안된 자동 포트홀 탐지 기술의 성능을 검증하기 위하여 총 450장의 평가 DB를 생성하였고, 총 네 명의 전문가가 각각의 이미지를 평가하였다. 평가 결과, 제안된 포트홀 탐지 기술은 높은 민감도 수치를 나타나는 것으로 평가 되었으며, 이는 정탐에서 강건한 성능을 보이는 것으로 해석 가능하다.

신제품 개발을 위한 GAN 기반 생성모델 성능 비교 (Performance Comparisons of GAN-Based Generative Models for New Product Development)

  • 이동훈;이세훈;강재모
    • 문화기술의 융합
    • /
    • 제8권6호
    • /
    • pp.867-871
    • /
    • 2022
  • 최근 빠른 유행의 변화 속에서 디자인의 변화는 패션기업의 매출에 큰 영향을 미치기 때문에 기업들은 신제품디자인 선택에 신중할 수밖에 없다. 최근 인공지능 분야의 발달에 따라 패션시장에서도 소비자들의 선호도를 높이기 위해 다양한 기계학습을 많이 활용하고 있다. 우리는 선호도와 같은 추상적인 개념을 수치화함으로써 신제품 개발에 신뢰성을 높이는 부분에 기여하고자 한다. 이를 위해 3가지 적대적 생성 신경망(Generative adversial netwrok, GAN)을 통하여 기존에 없는 새로운 이미지를 생성하고, 미리 훈련된 합성곱 신경망(Convolution neural networkm, CNN)을 이용하여 선호도라는 추상적인 개념을 수치화시켜 비교하였다. 심층 컨볼루션 적대적 생성 신경망(Deep convolutional generative adversial netwrok, DCGAN), 점진적 성장 적대적 생성 신경망(Progressive growing generative adversial netwrok, PGGAN), 이중 판별기 적대적 생성 신경망(Dual Discriminator generative adversial netwrok, D2GAN)의 3가지 방법을 통해 새로운 이미지를 생성하였고, 판매량이 높았던 제품으로 훈련된 합성곱 신경망으로 유사도를 비교, 측정하였다. 측정된 유사도의 정도를 선호도로 간주하였으며 실험 결과 D2GAN이 DCGAN, PGGAN에 비해 상대적으로 높은 유사도를 보여주었다.