설계단계에서 시스템의 불확실성을 반영하려는 노력이 다양하게 이루어지고 있으며, 강건 최적설계 혹은 신뢰도 기반 최적설계는 이에 대한 대표적인 설계 방법론이다. 실제 문제에 이러한 방법론을 적용하기 위해서는 성능함수의 통계적 모멘트와 손상확률에 대한 정확하고 효율적인 추정 방법이 필요하고, 더불어 최적화를 위한 방향탐색과정에서 요구되는 민감도 해석의 정확성 및 효율성이 확보되어야 한다. 본 연구에서는 함수근사모멘트 방법을 기존에 유도된 적분 형태의 민감도 해석 식에 적용하여 그 민감도 해석 결과의 정확성을 확인하고, 이를 대표적인 신뢰도 기반 최적설계 문제에 적용하고자 한다. 민감도 해석 결과 및 신뢰도 기반 최적설계 결과를 타방법의 결과와 비교하여 함수근사모멘트 방법의 타당성을 입증하고자 한다. 활용된 적분 형태의 민감도 해석은 손상확률 혹은 통계적 모멘트가 계산된 경우 추가적인 함수 계산 없이 민감도를 얻을 수 있는 효율적인 방법이다.
최근들어, 커널 기법(kernel method)은 패턴 분류, 함수 근사 및 비정상 상태 탐지 등의 분야에서 상당한 관심을 끌고 있다. 특히, 서포트 벡터 머신(support vector machine)이나 커널 주성분 분석(kernel principal component analysis) 등의 방법론에서 커널의 역할은 매우 중요한데, 이는 고전적인 선형 머신이 비선형성을 효과적으로 다룰 수 있도록 일반화 해줄 수 있기 때문이다. 본 논문에서는 커널 기반 가우시안 프로세스(gaussian process) 함수근사 기법과 서포트 벡터 학습을 이용하여 레이더와 강우계의 관측 데이터를 융합하는 문제를 고려한다. 그리고, 국내의 강원, 경북 및 충북에 걸쳐있는 지역에 대한 레이더 자료 및 강우계 자료를 대상으로 하여 본 논문에서 고려하는 방법론들에 의해 데이터 융합을 수행한 결과를 제시하고, 성능비교를 수행한다.
본 논문에서는 멀티웨이브릿 필터뱅크를 이용한 임베디드 제로 트리구조의 영상압축 기법을 제안한다. 멀티웨이브릿은 두 채널의 필터 뱅크를 갖는 새로운 방법의 DGHM스케일링 함수와 웨이브릿 함수를 사용한다. 임베디드 제로 트리 코딩은 영상압축을 위하여 사용한다. 각 스케일링 및 웨이브릿 함수는 두 개의 필터뱅크를 사용한다. DGHM 멀티웨이브릿의 중요한 특성은 직교성과 근사화 차수이다. 본 논문에서 사용한 DGHM 멀티웨이브릿은 근사화 차수가 2인 높은 에너지 압축성과 완전복원을 가진다. DGHM 멀티웨이브릿을 사용한 영상압축은 단일 Daubechies 웨이브릿(D4), 쌍직교 웨이브릿, 및 GHM 멀티웨이브릿 보다 압축율에 대한 우수한 PSNR을 가진다.
본 연구에서는 다면체 요소의 개발을 위하여 Wachspress 좌표계와 이동최소자승 근사를 기반으로하는 형상함수와 수치적분 방법을 제시하고 있다. 사면체 요소를 사면체 영역으로 분할하여 형상함수가 구성이 되고 이 영역을 사용한 일관성있는 수치적분이 수행되게 된다. 다면체 요소 면에서 Wachspress 좌표계를 사용하고 요소 내부에서 라플라스 방정식을 적용하여 이동최소자승 근사의 가중함수를 정의하게 된다. 본 연구에서 개발되는 다면체 요소의 형상함수와 수치적분 방법은 일반적인 유한요소와 유사한 특성을 갖게 되는데 수치 예제를 통하여 유효성을 보여주었다.
본 논문에서는 퍼지와 웨이브렛 변환의 다해상도 분해(MRA)를 가진 퍼지 개념을 이용한 웨이브렛 신경망을 제안하고, 또한 이 시스템을 이용하여 임의의 비선형 함수 학습 근사화를 개선하고자 한다. 여기에서 퍼지 개념은 벨(bell)형 퍼지 소속함수를 사용하였다. 그리고 웨이브렛의 구성은 단일 크기를 가지고 있으며, 퍼지 개념을 이용한 웨이브렛 신경망의 학습을 위해 역전파 알고리즘을 사용하였다. 웨이브렛 변환의 다해상도 분해, 벨형 퍼지 소속 함수 그리고 학습을 위한 역전파 알고리즘을 이용한 이 구조는 기존의 알고리즘보다 근사화 성능이 개선됨을 모의 실험을 통하여 1차원, 2차원 함수에서 확인하였다.
Borresen의 1.5군 소격 확산이론에 의거하여 2군 중성자 속에 대한 adjoint 함수를 근사적으로 계산할 수 있는 한가지 간단한 방법을 제안하였다. 이 방법에서는 열 중성자 속에 대한adjoint 함수의 누설항을 1.5군 이론의 원리에 입각하여 기하학적 buckling에 의해 근사적으로 기술하게 되는데 이때 그 기하학적 buckling은 속중성자속의 adjoint 함수로부터 구하게 된다. 한편 제안된 계산 방법의 정확도를 알기 위해 adjoint함수 계산에 대한 KIDD 전산코드의 계산결과와 제안된 방법의 계산결과를 비교하였으며 이로부터 제안된 방법이 정확도면에서 만족스런 adjoint함수를 예측 할 수 있다는 것을 보였다. 뿐만 아니라 이 방법은 섭동 이론과 관련하여 반응도 평가에 유용하게 이용될 수 있다는 것도 보였다.
제약을 갖는 부분 관찰 의사결정 과정(Constrained Partially Observable Markov Decision Process; CPOMDP)는 정책이 제약(constraint)를 만족하면서 가치 함수를 최적화하도록 일반적인 부분 관찰 의사결정과정(POMDP)을 확장한 모델이다. CPOMDP는 제한된 자원을 가지거나 여러 개의 목적 함수를 가지는 문제를 자연스럽게 모델링할 수 있기 때문에 일반적인 POMDP에 비해 더 실용적인 장점을 가진다. 본 논문에서는 CPOMDP의 확률적 최적 정책 및 근사 최적 정책을 계산할 수 있는 최적 및 근사 동적 프로그래밍 알고리즘을 제안한다. 최적 알고리즘은 동적 프로그래밍의 각 단계마다 미니맥스 이차 제약 계획 문제를 계산해야 하는 반면에 근사 알고리즘은 선형 계획 문제만을 필요로 하는 점-기반(point-based) 가치 업데이트를 이용한다. 실험 결과, 확률적 정책이 결정적(deterministic) 정책보다 더 나은 성능을 보이며, 근사 알고리즘을 통해 계산 시간을 줄일 수 있음을 보였다.
다변량 왜정규분포는 다변량 정규분포를 포함하는 분포로 최근 많은 응용분야에서 활용되고 있다. 본 논문에서는 다변량 왜정규분포를 기반으로 하는 선형결합통계량의 분포함수에 대한 안장점근사를 다루었다. 이는 단변량 왜정규분포 기반 표본평균에 대한 Na와 Yu (2013)의 결과를 선형결합 및 다변량의 경우로 확장한 것이다. 모의실험과 실제자료분석을 통해 제안된 근사법의 유용성과 정확도를 확인하였다.
본 논문은 빠른 학습과 정확한 근사 능력을 갖는 새로운 CMAC 신경망 기반 퍼지 제어기르 제안한다. 제안한 CMAC 신경망 기반 퍼지 제어기(CBFLC)는 한 학습 주기 동안 전향 및 역전파 연산시 신경망내 유닛중 극히 일부분만이 활성화되어 학습에 참가하므로 학습 시간이 매우 빠르고, 비퍼지화 연산시 소속 함수의 중심값 뿐 아니라 폭을 동시에 고려하여 정확한 근사화를 얻는다. 제안한 퍼지 제어기내 입?출력 소속 함수의 중심값 및 폭 등의 구조적 파라메터들은 역전파 알고리즘에 의해 갱신된다. 제안한 CMAC 신경망 기반 퍼지 제어기를 트럭 후진 주차문제에 적용하여 근사화 능력 및 제어 성능면에서 여러 다른 퍼지 제어기들과 비교한다.
영상신호의 이차원 코사인 변환부호화에 있어서 변환계수의 분포계수화는 매우 중요하다. 그 이유는 블록양자화 시 분포함수를 잘못 가정하면 양자화잡음이 매우 커지기 때문이다. 본 논문에서는 일반화된 가우시안 분포함수를 이용하여 test를 행한 결과 AC변환계수들은 shape parameter가 0.6인 일반화된 가우시안 분포로 잘 근사화된다는 결과를 얻었다. 이차원코사인 변환부호화의 컴퓨터 시뮤레이션을 통해 Laplacian이나 Gaussian분포로의 근사화와 비교한 결과 shape parameter가 0.6인 일반화된 가우시안 분포로 근사화하는 경우 실험치와 이론치가 거의 일치하며 추력신호 잡음비도 가장 크게 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.