• Title/Summary/Keyword: 한국이미지

Search Result 12,827, Processing Time 0.048 seconds

A Study on rendering image denoising using Harris corner detection and median filtering (Harris corner 검출법과 median filtering을 이용한 렌더링 이미지 노이즈 제거에 관한 연구)

  • You, Hojoon;Oh, Jaemu;Hwang, Hyeonsang;Lee, Eui Chul
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.960-962
    • /
    • 2021
  • Monte Carlo 렌더링은 모든 빛을 광원에서부터 추적하는 것 대신, 몇 개의 빛의 경로만을 추적해서 이들의 평균으로 화소값을 정해 이미지를 만드는 방법이다. 여기서 추적하는 빛이 많다면 이미지가 사실적으로 만들어질 수 있지만 연산량이 증가한다. 따라서 적은 빛의 경로를 추적하여 렌더링을 수행하여 이미지를 만들고, 노이즈를 제거해서 많은 양의 빛을 추적하여 렌더링을 한 이미지와 유사하게 만들려는 연구가 많이 진행되고 있다. 그러나 이러한 연구들은 많은 연산량을 요구하기 때문에 고성능의 기기 사양을 요구한다. 따라서 본 연구에서는 저사양의 기기에서 활용할 수 있도록 Harris corner 검출법과 median filtering을 활용한 렌더링 이미지 노이즈 제거 연구를 수행했다.

3D Augmented pose estimation through GAN based image synthesis (GAN 기반 이미지 합성을 통한 3차원 증강 자세 추정)

  • Park, Chan;Moon, Nammee
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.667-669
    • /
    • 2022
  • 2차원 이미지를 통한 자세 추정의 경우 관절이 겹치거나 가려져 있는 등의 인식 저해 요소로 인하여 자세 추정 정확도가 감소하는 한계가 있다. 본 논문에서는 GAN을 통해 2차원 이미지를 3차원으로 증강한 뒤 자세를 추정하는 기법을 제안한다. 제안하는 방법은 2차원 이미지의 평면좌표 값에서 GAN을 통해 노이즈 벡터 z축 값과 피사체에 투영되는 빛의 방향 값을 반영한 3차원 이미지를 만든다. 이러한 이미지 합성 과정을 거친 후 DeepLabCut을 사용해 관절 좌표를 추출하고 자세 추정 및 분류를 진행한다. 이를 통해 2차원에서의 자세 추정 정확도 향상을 기대할 수 있으며, 향후 이를 기반한 이상행동 탐지 분야에서 적용할 수 있다.

Evaluation of a Deblur Deep Learning Model for Image Registration Collected from Robots and Drones (로봇 및 드론 센서로 수집한 이미지 정합을 위한 Deblur 딥러닝 모델 평가)

  • Lee, Hye-min;Kwon, Hye-min;Moon, Hansol;Lee, Chang-kyo;Seo, Jeongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.153-155
    • /
    • 2022
  • Recently, we are using robots and drones to collect images. However, as the robot or drone is shaken by external influences, pre-processing technology to register images is required. Therefore, in this paper, we use autonomous robots, drones dataset and improve the quality of shaken image data through the Deblur deep learning model. We confirmed through the experimental results that the shaken images were registered and evaluated the model.

  • PDF

Painterly Rendering Reflecting 2D Image Relighting and Color Change (2D 이미지 재조명에 따른 색채변화를 반영한 비사실적 렌더링)

  • Hwi-Jin Kim;Jong-Hyun Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.399-402
    • /
    • 2023
  • 본 논문에서는 빛에 영향에 따른 유화의 변화를 보여주기 위해 2D 이미지 재조명과 색채변화를 반영한 회화적 렌더링 방법을 제안한다. 이 방법은 2D 이미지를 재조명하고 해당 음영 값을 가중치로 하여 색채변화를 반영해 렌더링한다. 이때 재조명의 경우 2D 이미지를 3D 이미지로 근사 추정하여 노말값을 결정하고 해당 값과 조명 위치값 사이의 각을 음영 값으로 추출하여 반영한다. 조명 위치는 사용자가 지정 가능하며 빛에 영향에 따른 색채변화 결과는 기존에 연구된 결과를 참조한다. 본 논문에서는 기존의 로컬 이미지에 근사한 자동 회화적 렌더링이 보여주는 단순하고 평면적인 결과에 비해, 재조명을 통해 빛바랜 색과 양감을 반영함으로써 현실에 존재하는 작품처럼 생동적이고 입체적인 렌더링 결과를 제공하여 문화예술작품으로의 표현 및 색채변화 예측-복원에 기여하고자한다.

  • PDF

Image captioning and video captioning using Transformer (Transformer를 사용한 이미지 캡셔닝 및 비디오 캡셔닝)

  • Gi-Duk Kim;Geun-Hoo Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.303-305
    • /
    • 2023
  • 본 논문에서는 트랜스포머를 사용한 이미지 캡셔닝 방법과 비디오 캡셔닝 방법을 제안한다. 트랜스포머의 입력으로 사전 학습된 이미지 클래스 분류모델을 거쳐 추출된 특징을 트랜스포머의 입력으로 넣고 인코더-디코더를 통해 이미지와 비디오의 캡션을 출력한다. 이미지 캡셔닝의 경우 한글 데이터 세트를 학습하여 한글 캡션을 출력하도록 학습하였으며 비디오 캡셔닝의 경우 MSVD 데이터 세트를 학습하여 학습 후 출력 캡션의 성능을 다른 비디오 캡셔닝 모델의 성능과 비교하였다. 비디오 캡셔닝에서 성능향상을 위해 트랜스포머의 디코더를 변형한 GPT-2를 사용하였을 때 BLEU-1 점수가 트랜스포머의 경우 0.62, GPT-2의 경우 0.80으로 성능이 향상됨을 확인하였다

  • PDF

'GANerate', A Mass Image Creation and TradingPlatform based on User Input using GAN (GAN을 활용한 사용자 입력 기반의 대량 이미지 생성 및 거래 플랫폼 'GANerate')

  • Choi-Pil Hwa;Han-Jong Won;Choi-Yeon A;Park-Jeong Min;Sang-Oh Yoo
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.922-923
    • /
    • 2023
  • 인터넷에는 많은 이미지 데이터가 존재하지만, 대규모 이미지를 효과적으로 수집하는 것은 어려운 실정이다. 본 논문은 GAN을 통해 사용자가 지정한 개수만큼 원하는 이미지를 생성하는 웹 플랫폼을 제안한다. 기존의 단일 이미지다운, 크롤링, 웹 스크래핑을 통한 이미지 데이터 수집 방법보다 다량 이미지 데이터를 안전하게 수집할 수 있을 것으로 기대된다.

Landmark recognition through image searcher (이미지 검색기를 통한 랜드마크 인식)

  • Gi-Duk Kim;Geun-Hoo Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.313-315
    • /
    • 2024
  • 본 논문에서는 이미지 검색기를 통한 랜드마크 인식 방법을 제안한다. 특정 랜드마크 데이터세트에서 라벨링을 하지 않은 비지도 학습을 통해서 이미지에서 랜드마크의 클래스 분류를 위한 특징을 추출한다. 학습된 모델을 랜드마크 데이터세트인 Paris6k 데이터세트와 Oxford5k 데이터세트에 적용하여 랜드마크 인식 정확도를 확인하였다. 성능과 속도를 강화하기 위해 이미지 특징 추출 모델로 ResNet 대신에 YOLO에서 사용된 CSPDarknet-53을 사용하여 모델의 크기를 줄이고 랜드마크 인식 정확도를 높였다. 그리고 모델로부터 추출된 특징의 수를 줄여 이미지 검색 시 소요되는 시간을 감소시켰다. 학습된 모델로 rOxford5k 데이터 세트에 적용 시 mAP 80.37, rParis6k에서 mAP 89.07을 얻었다.

  • PDF

Adult Contents Filtering Technique using Image and Sound (사운드와 이미지를 기반으로 한 성인 컨텐츠 필터링 기법)

  • Cho, Jungik;Jo, Jinsu;Lee, Yillbyung
    • Annual Conference of KIPS
    • /
    • 2007.11a
    • /
    • pp.121-123
    • /
    • 2007
  • 현재까지 유해한 컨텐츠(Contents)를 차단하기 위한 활발한 연구가 있었으나, 사람의 사운드(sound)와 이미지(image)를 통합한 필터링(filtering) 기법에 대한 연구는 활발히 이루어지지 않은 측면이 있다. 본 논문은 이미지(image) 데이터 중 피부색 분포 비율과 사운드(sound) 데이터 중 주파수 분석을 통한 심층적인 기법을 활용하여 현재까지 진행되고 있는 이미지 필터링(image filtering)방법에 대한 수행 결과보다 획기적으로 개선된 성능을 보이고자 한다. 즉, 사운드와 이미지의 특징 정보를 이용한 성인 컨텐츠(Adult Contents)분류 기법을 활용하는 것으로 성인 컨텐츠(Adult Contents)에서 두드러지는 특징을 보이는 사운드 패턴을 분석하여 현재까지 한정된 자원인 이미지만을 활용한 기법보다는 현저한 향상된 수행능력을 예측해 볼 수 있다.

A Design of Sketch Image Transformation and Its Web-Search Results (스케치의 이미지 변환 모델을 이용한 웹 이미지 검색 설계)

  • Yeonwoo Park;Hyejung Ji;Chae-lin Choi;Yoonhee Kim
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.822-823
    • /
    • 2024
  • 직접 그린 스케치 그림을 실제 이미지처럼 변형하는 모델에 연구가 있다. 본 논문은 스케치를 실제 사진으로 변환할 수 있도록 모델을 학습시켜 웹검색이 가능한 웹어플리케이션의 개발을 연구한다. 이를 위하여 관련 데이터를 수집/선별해 학습시킨다. 웹서버와 모델을 연동하여 사진을 입력하면 학습된 이미지 그림 결과를 생성하고 웹에 검색 API를 연결해 해당 이미지 파일의 검색 결과를 바로 제공한다. 이를 통하여 손그림 이미지에 대한 상품 구매 등이 가능하다.

Hierarchical vulnerability detection technique robust against polymorphic Docker image attacks (다형성 도커 이미지 공격에 강인한 계층적 취약점 탐지 기법)

  • Jung-Hwa Ryu;Il-Gu Lee
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.101-104
    • /
    • 2024
  • 최근 클라우드가 전 산업에 도입되면서 클라우드 네이티브 환경에 관한 관심이 증가하고 있다. 클라우드 서비스 개발자는 도커 (Docker) 이미지를 활용하여 개발 환경을 구축하고 배포한다. 그러나 종래의 이미지 스캐닝 도구들은 해시값 기반의 시그니처 탐지 방법론을 사용하기 때문에 제로데이 취약점을 탐지하지 못하거나, 이미 저장된 CVE DB에 있는 취약점만 탐지할 수 있었다. 본 논문은 도커 이미지의 계층성을 활용하여 다형성 도커 이미지 공격을 탐지할 수 있는 기법을 제안한다. 실험결과에 따르면 제안한 방법은 종래 방법 대비 다형성 도커 이미지 공격 탐지율을 28.6% 개선할 수 있었다.