• Title/Summary/Keyword: 한국수화

Search Result 2,091, Processing Time 0.031 seconds

Hydration and Electrical Resistance of Cement Composites Containing MWCNTs (MWCNT가 첨가된 시멘트복합체의 수화 및 전기저항 특성)

  • Lee, Gun-Cheol;Kim, Young-Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.1
    • /
    • pp.11-18
    • /
    • 2020
  • Carbon nanotubes are used in various industries with their excellent mechanical properties and electrical conductivity. In the construction industry, research is being conducted to give self-sensing capabilities to structures, but the results of experiments vary among researchers, and the analysis is insufficient. Therefore, in this study, the hydration and electrical properties of MWCNT-added cement pastes were measured. The electrical resistance values of hydration heat, porosity, Rietveld quantitative analysis, compressive strength, and distance were measured.. The heat resistance, porosity, Rietvelt quantitative analysis, compressive strength and distance were measured according to electrical resistance. Experimental results showed that the heat of hydration decreased with increasing MWCNT. XRD Rietveld quantitative analysis showed that there was no significant difference in the amount of hydration products with increasing addition rate of MWCNT. As a result of SEM analysis, the MWCNT is agglomerated by van der Waals forces, and this area is considered to be caused by voids and weak areas. The electrical resistance value decreases as the addition rate is increased, and thus may play a role for magnetic sensing in the future.

Screening of Fungicides for the Control of Colletotrichum acutatum in Carthamus tintorious L. (홍화 탄저병 방제 약제 선발)

  • 김민자;김인재;남상영;강효중;이철희;송범헌
    • Korean Journal of Plant Resources
    • /
    • v.15 no.3
    • /
    • pp.211-215
    • /
    • 2002
  • This study was carried out to select fungicides which are effective for the control of anthracnose disease of Carthamus tintorious L. caused by Cottetotrichum acutatum. Eive chemicals, i.e., thiophanate-methyl$.$triflumizole, iminoctadinetris$.$thiram, metiram, bitertanol$.$propineb, metalaxyl$.$dithianon were treated to Cheongiu native variety for the test of control effect. The results obtained were summarized as the follows; No. of harvested plants per ㎡ was most in iminoctadinetris$.$thiram and its value showed 21.2 compared with 16.8 in control. Iminoctadinetris$.$thiram and metiram were most effective to control the disease and their contyol values were 57.2%, and 49.4%, respectively. Chemical injury of five chemicals was not occurred at the double-diluted solution treatment. Seed yield was 47∼48% higher in iminoctadinetris$.$thiram and metiram than 75 kg/10 a in control.

Kinetic Studies on Hydration of Akibare and Milyang 23 Brown Rice (아끼바레와 밀양 23호 현미의 수화속도)

  • Kim, Kwang-Joong;Pyun, Yu-Ryang;Cho, Eun-Kyung;Lee, Sang-Kyu;Kim, Sung-Kon
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.297-302
    • /
    • 1984
  • Kinetics of water diffusion during soaking of two brown rice varieties, Akibare (traditional rice) and Milyang 23 (high-yielding rice), were studied. Brown rice reached at the equilibrium moisture content after 18 hours. The absorption of liquid water by brown rice grain was directly proportional to the square root of hydration time and could be described by the simplified solution of Fick's diffusion equation. The diffusion coefficient was given by the Arrhenius relation: $D\;=\;2.738{\time}10^{-1}\;exp\;(-9,300/RT)$ for Akibare and $D\;=\;4.302{\time}10^{-1}\;exp\;(-9,500/RT)$ for Milyang 23. Hydration rate calculated from hardness change followed the equation of a first order reaction. Hydration mechanism of brown rice was changed at the gelatinization temperature of rice starch.

  • PDF

Heat of Hydration and Thermal Crack Control for Floating Concrete Mass Foundation (부상식 매스콘크리트 기초의 수화열 관리 및 온도균열 제어)

  • Rhee, In-Kyu;Kim, Kwang-Don;Kim, Tae-Ook;Lee, Jun-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.156-164
    • /
    • 2010
  • A total of 6 stepwise constructions were made for building the floating mass concrete foundation. The optimal curing strategies and specialized construction guidelines were adoptively extracted from the 1.5m cube mock-up test prior to the main concrete work. Two different thermal crack index(TCI) calculations from current construction manual exhibit relatively low values as comparing the measured temperature data. This implies that the hydration-induced cracking could be developed in parts of concrete mass. However, the controversial phenomenons in reality were observed. No significant surface cracks are detected at the successive construction stages. Thereby, this paper raises the question regarding on the existence of characteristic length with varying size and shape of a target specimen which are missing in the current construction manual. The isothermal core area and high thermal gradient area in the edge volume should be identified and be introduced to TCI calculation for the purpose of an accuracy.

Modified-stoichiometric Model for Describing Hydration of Alkali-Activated Slag (알칼리 활성 슬래그의 수화에 대한 개선된 화학양론적 모델)

  • Abate, Selamu Yihune;Park, Solmoi;Song, Keum-Il;Lee, Bang-Yeon;Kim, Hyeong-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • The present study proposes the modified-stoichiometric model for describing hydration of sodium silicate-based alkaliactivated slag(AAS), and compares the results with the thermodynamic modelling-based calculations. The proposed model is based on Chen and Brouwers(2007a) model with updated database as reported in recent studies. In addition, the calculated results for AAS are compared to those for hydrated portland cement. The maximum difference between the proposed model and the thermodynamic calculation for AAS was at most 20%, and the effects of water-to-binder ratio and activator dosages were identically described by both approaches. In particular, the amount of non-evaporable water was within 10% difference, and was in excellent agreement with the experimental results. Nevertheless, notable deviation was observed for the chemical shrinkage, which is largely dependent on the volume of hydrates and pores.

Experimental Study on Evacuation Efficiency in the Airplane Cabin on Emergency (항공기 비상상황 시 기내 대피 효율성에 관한 실험적 연구)

  • Jung Hyun Yoo;Young Sam Lee;So Jung Na;Jong Hoon Kim
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.128-137
    • /
    • 2024
  • Purpose: This study was conducted to investigate, through experimental methods, the efficiency of passenger movement and evacuation in the event of an emergency situation on an aircraft. Method: The experiment was conducted a total of 4 times, including 3 scenarios. The three situations were evacuation without luggage, evacuation with carry-on baggage, and evacuation with carry-on baggage and carrier. In the experiment, time was measured based on recorded video. Result: The total evacuation time was found to be approximately 1.5 times higher for the evacuation with luggage, and approximately 3.5 times higher for the evacuation with luggage and 3 carriers compared to the evacuation result in a situation where nothing was carried. As a result of applying the evacuation simulation, it was found that there was a difference from the experimental results. In particular, consideration of complex situations such as carrying out and moving carriers is considered to be a situation that requires more technical research. Conclusion: Quantitive data was obtained to determine how carry-on luggage and carrier affect evacuation.

A Study on the Characteristics of Manufactured Mg Crown on the Calcining Conditions of Dolomite (백운석의 소성 조건에 따른 제조 Mg crown의 특성에 관한 연구)

  • Hwang, Dae Ju;Yu, Young Hwan;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.611-625
    • /
    • 2021
  • Mg crowns were manufactured using domestic dolomite (Ca·Mg(CO3)2) (20~30 mm). In order to manufacture the calcined dolomite (CaO·MgO), (a) electric furnace (950 ℃, 480 min) and (b) microwave furnace (950 ℃, 60 min) processes were used. As a result of XRD analysis, it was analyzed as (a) CaO 56.9 wt%, MgO 43.1 wt% by electric furnace process and (b) CaO 55 wt%, MgO 45 wt% by microwave furnace process. Even when the decarbonation reaction time of dolomite was shortened by 1/8 in microwave furnace process compare with electric furnace process, the calcined dolomite could be produced. The hydration reaction (ASTM C 110) is a standard for the hydration reactivity of calcined dolomite, and the calcined dolomite produced by electric furnace process showed a high hydration reactivity (max temp 79.8 ℃/1.5 minutes). Such hydration reactivity was occurred by only CaO hydration reaction and that was confirmed by XRD analysis. The calcined dolomite produced by microwave furnace process showed low hydration reactivity (max temp 81.7 ℃/19.5 minutes). Such low hydration reactivity was occurred by CaO and MgO hydration reaction due to the hydration reaction of CaO thereafter occurring of the hydration reaction of MgO, and that was confirmed by XRD analysis. The prepared Mg crown were 58.8 g and 74.6 g by electric furnace and microwave furnace processes, respectively, under the reaction conditions of 1,230 ℃, 60 min, 5 × 10-2 torr by silicothermic reduction.

Synthesis of High Purity Alumina by Controlled Precipitation Method from Clay Minerals (I) Preparation of Aluminum Sulfate Hydrate and Alumina from Clay Minerals (점토 광물로부터 제어 침전법에 의한 고순도 알루미나의 합성 (I) 점토 광물로부터 수화 황산 알루미늄 및 알루미나의 제조)

  • No, Tae-Hwan;Lee, Heon-Su;Son, Myeong-Mo;Park, Hui-Chan
    • Korean Journal of Materials Research
    • /
    • v.2 no.1
    • /
    • pp.3-11
    • /
    • 1992
  • Aluminum sulfate hydrate was prepared using sulfuric acid from Ha-dong kaolin. The effects of calcination-temperature and calcination-time of kaolin, reaction-temperature and reaction-time, and sulfuric acid concentration on the formation of aluminum sulfate hydrate were investigated. The precipitation condition of aluminum sulfate hydrate from sulfuric acid solution was determined. Also, the products heat-treated at different temperatures have been investigated by X-ray diffraction, thermogravimetry, differential thermal analysis, Fourier transform infrared spectrophotometer, scanning electron microscopy, particle size distribution analysis and chemical analysis. In the optimum condition, the conversion of aluminum oxide in kaolin to aluminum sulfate hydrate was 60%. From the results of XRD, TG-DTA, and FT-IR, it is suggested that the aluminum sulfate hydrate is thermally decomposed as follows ; $Al_2(SO_4)_3{\cdot}18H_2O{\rightarrow}Al_2(SO_4)_3{\cdot}6H_2O{\rightarrow}Al_2(SO_4){\rightarrow}\;amorphous\;alumina{\rightarrow}{\gamma}-alumina{\rightarrow}{\delta}-alumina{\rightarrow}{\theta}-alumina{\rightarrow}{\alpha}-alumina$. The purity of alumina powder prepared by calcining aluminum sulfate hydrate at $1200^{\circ}C$ was 99.99 percent.

  • PDF

Properties of Hydration Heat of High-Strength Concrete and Reduction Strategy for Heat Production (고강도 콘크리트의 수화열 특성 및 발열 저감대책에 관한 연구)

  • Jaung, Jae-Dong;Cho, Hyun-Dae;Park, Seung-Wan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.2
    • /
    • pp.203-210
    • /
    • 2012
  • Recently, the interest and demand for large-scale buildings and skyscrapers have been on the rise, and the performance of concrete is an area of high priority. Securing 'mass concrete and high strength concrete' is very important as a key construction technology. For high strength concrete, the high heat of hydration takes place inside the concrete because of the vitality of hydration in cement due to the large amount of powder, and leads to problems such as an increase of thermal stress due to the temperature difference with the outside, which results in cracks and slump loss. For this reason, measures to solve these problems are needed. This study aims to reduce the hydration heat of high strength concrete to control the hydration heat of mass concrete and high strength concrete, by replacing the type of admixture, The purpose of this study is to control the hydration heat of high strength concrete and mass concrete. Our idea for this purpose is to apply not only the types and contents of admixture but also incorporation mixing water to ice-flake. As a result of the test, the use of blast furnace slag and fly ash as admixture, and the use of ice-flake as mixing water can improve the liquidity of concrete and reduce slump loss. Significantly dropping the maximum temperature will contribute greatly to reducing cracks due to hydration heat in mass concrete and high strength concrete, and improve quality.

Evaluation of Hydration Heat of Mass Concrete with Capsulated Slurry PCM and FEM Study for Analyzing Thermal Crack (캡슐형 슬러리 PCM을 혼입한 매스콘크리트의 수화열 평가 및 온도균열 FEM 해석에 관한 연구)

  • Park, ChangGun;Kim, Bo-Hyun;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.5
    • /
    • pp.379-388
    • /
    • 2014
  • The purpose of this study is to investigate the effect of capsulated slurry phase change material (PCM) on the thermal crack in mass concrete by experimental work and FEM analysis. In this study, three conditions of samples were prepared for evaluating the level of hydration heat, i.e., a material condition, a cement paste condition and a concrete condition. Also, a compressive strength test was conducted for FEM inverse analysis. Based on the results of the experiment, exothermic function coefficients of concrete with encapsulated slurry PCM were deducted by the inverse analysis. After that, they applied to FEM analysis of the mass scale concrete structures. From the results of this experiment, $31^{\circ}C$ capsulated slurry PCM had no super cooling phenomenon in the material condition. In the cement condition, hydration heat decreased by 34.61J when PCM of 1g was mixed. In the concrete condition, PCM of 6% was deducted as the best level in hydration heat absorption. In FEM inverse analysis, rate coefficient of reaction gradually decreased when PCM mixing ratio increased. But, temperature-rise coefficient increased when PCM mixing ratio exceeded 6%. For the inversed exothermic function coefficients applying to large scale concrete structures, a thermal cracking index increased by 0.05 when PCM of 1% was mixed.