• Title/Summary/Keyword: 한계상태 해석법

Search Result 162, Processing Time 0.027 seconds

Numerical Simulation of Cone Penetration Tests in Sand Ground Using Critical State Mohr Coulomb Plasticity Model (한계상태 Mohr Coulomb 소성 모델을 활용한 콘관입시험의 수치적 모사)

  • Woo, Sang Inn;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.2
    • /
    • pp.37-51
    • /
    • 2019
  • This study focuses on the numerical simulations of the cone penetration tests in a sand ground. The mechanical responses of sand were described using the modified Mohr Coulomb plasticity model based on the critical state soil mechanics. In the plasticity model, the dilatancy angle was not a constant, but a function of the distance to the critical state line from the current state of void ratio and mean effective stress. To simulate cone penetration tests numerically, this study relied on Lagrangian finite element method under the axisymmetric condition. To enable penetration of the cone penetrometer without tearing elements along the symmetric axis, the penetration guide concept was adopted in this study. The results of numerical simulations on the calibration chamber cone penetration tests had good agreement with the experimental results.

The Evaluation Applying Limit State Method for the Concrete Retaining Wall Structures (콘크리트 옹벽구조물의 한계상태설계법 적용성 평가)

  • Yang, Taeseon;Jeong, Jongki;Seo, Junhee;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.7
    • /
    • pp.59-66
    • /
    • 2014
  • Nowadays, some studies are performed in order to introduce the Limit State Design method widely used in foreign work sites. LRFD (Load Resistance Factor Design) method is widely used in the fields in which the data accumulation is possible - such as deep foundations, and shallow foundations, etc. The limit state design in the retaining walls is insufficient in the country owing to difficulties applying load tests. The limit state design method for retaining wall structures are studied based upon the National Retaining wall Design Standard legislated in 2008 by Ministry of Land, Transport, and Maritime Affairs. In this paper several retaining walls were calculated according to LRFD design criteria analysis using the general program with limit state design method and the factor of safety for sliding and overturning. Comparing with their results, the Taylor's series simple reliability analysis was performed. In the analysis results of retaining wall section, safety factors calculated by LRFD were found to be lowered than those calculated in current WSD, and it is possibly judged to be economic design by changing wall dimensions. In the future, pre-assessment of the geotechnical data for ensuring the reliability and the studies including reinforced retaining walls with ground anchor are needed.

A high strength concrete segment lining design using the limit state design code (한계상태 설계법을 이용한 고강도 콘크리트 세그먼트 라이닝 설계)

  • Park, Inn-Joon;Koh, Sung-Yil;Hwang, Chang-Hee;Oh, Myung-Ho;Kim, Young-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.5
    • /
    • pp.547-559
    • /
    • 2012
  • The concrete structural design in domestic has based on the allowable stress design (ASD) method and ultimate strength design (USD) method. Recently limit state design (LSD) method has issued and attempted to adopt in geotechnical design. Because ASD method and USD method have restriction in economic design. In this study, the generated member forces were calculated about high strength concrete segment lining based on japanese LSD code. And it compared with domestic USD code for identifying the economic design possibility of LSD and domestic applicability. In analysis results, the aspect of moment had generated similarly each other but the member forces of japanese LSD code were decreased (26.0% of moment and 26.7% of shear force) comparing with USD method. For that reason, possibility of economic segment design with stable condition were identified.

Development of a Structural Safety Evaluation System for Stone Voussoir Arch Bridges (석조 홍예아치교의 구조적 안정성 평가시스템 개발)

  • Kim, Nam-Hee;Koh, Hyun-Moo;Hong, Sung-Gul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.15-23
    • /
    • 2009
  • Masonry structures that are very strong in compression fail due to the instability of structural shape of geometry rather than the material stress limit. Considering such structural behavior, the use of the limit theorem that focuses on structural collapse mechanisms is more appropriate for the evaluation of the structural safety of stone voussoir arch bridges. This paper is to investigate structural performance of the stone arch bridges constructed using dry construction method in Korea based on the limit theorem and to exploit the result to develop a system for an structural safety margin. It is expected that this study will help us understand structural behavior of stone voussoir arch bridges in Korea. Also, it will provide a guideline to make engineering decision from the viewpoint of the maintenance of cultural heritages.

An evaluation of influence factors based on the limit state design-AASHTO LRFD for structural analysis of shield tunnel segment lining (한계상태설계법-AASHTO LRFD를 적용한 쉴드터널 세그먼트 라이닝의 구조해석 영향인자 평가)

  • Kim, Yang-Woon;Kim, Hong-Moon;Kim, Hyun-Su;Lee, Seong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.99-118
    • /
    • 2018
  • Recently, the limit state design method in the design of the structure is in global trend, but it is limited to a few structures in Korea. Since the introduction of the limit state design method has recently been attempted for tunnels, which are the main underground structures, it is surely necessary to understand the latest limit state design method. Therefore, based on the recently published AASHTO LRFD Road Tunnel Design and Construction Guide Specification (2017), structural load factors and load combinations were reviewed, and various factors which should be applied for the review of structures have been analyzed. In this study, utility tunnel section and subway tunnel sections used in Korea were analyzed by the limit state design method, and we have analyzed the direction of application of limit state design method through studying the tendency of member force by various influential factors such as ground conditions, load modifier and joint stiffness.

Development of Numerical Analysis and Optimization AIgorithms for Orthotropic Continuous Curved Floor Slab Systems (이방성 연속 곡평면 슬래브 시스템의 수치해석과 최적화 알고리즘의 개발)

  • Park, Moon Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.1-15
    • /
    • 1992
  • A Practical and easily applicable methods for the numerical analysis and the optimum design of continuous and horizontally curved two-way slab systems with twelve possible edge conditions are presented. The proposed method for the numerical structural analysis is based on the use of design moment coefficients which are derived from the elastic theory of thin curved plates. The optimum values are selected from within the feasible region in the design space defined by the limit state requirements. The sequential linear programming is introduced as an analytical method of nonlinear optimization. The optimum design variables, including a effective depth and transformed steel ratios per unit width of middle and column strips of slabs, are then determined.

  • PDF

Application of the Critical State Theory to Multi-Dimensional Consolidation Analysis (다차원 압밀해석을 위한 한계상태이른의 적용)

  • 정진섭
    • Geotechnical Engineering
    • /
    • v.3 no.4
    • /
    • pp.7-20
    • /
    • 1987
  • This study was performed to investigate the effect of time-dependent creep on the deformation analysis of multi-dimensional consolidation using the finite element method for young Sedimentary clay. It was assumed that the creep in the clay had occured during consolidation. In the analysis, the Modified cam-clay theory originated from the critical state theory was used as the constitutive equation, in which a term equivalent to the creep was supplemnted. The results of the analysis were in good agreement with the observed values in the field.

  • PDF

Stability Analysis of Embankment Slopes Consisting of Rock Fragments (암석 버력으로 성토한 사면의 안정성 해석)

  • 김치환
    • Tunnel and Underground Space
    • /
    • v.12 no.2
    • /
    • pp.83-91
    • /
    • 2002
  • Stability analysis of rocky embankment slopes is done by both the limit equilibrium method and the finite difference method. The height or the rocky embankment is approximately 40 m and the side slope is 1 vertical to 1.5 horizontal. The cohesion and internal friction angle of rock debris are assumed zero and 43$^{\circ}$, respectively. For finite difference analysis, strength reduction method is used to calculate the saft factor of the slope. As a result, the safety factor of the slope is discovered to be 1.4 by using either methods. Considering that the design criteria of the safety factor is 1.3, it can be judged that the rock fragments embankment slope is in a stable state.

Stability Evaluation of failed Slope in Gohan, Korea using Numerical Analysis (강원도 정선군 고한 지역 붕괴사면의 수치해석을 이용한 사면안정성 평가)

  • Jang, Hyun-Sic;Lee, Ju-Young;Seo, Yong-Seok;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.511-523
    • /
    • 2014
  • Limit equilibrium analysis and finite difference analysis were used to evaluate slope stability in the in Gohan, Korea, which is affected by large-scale tensile cracks and uplift. There is a thick colluvial layer in the study area and predicting ground behavior is problematic because the presence of clay makes it difficult to determine the strength parameters of the soil. Consequently, a numerical model able to reflect the collapse properties of the site was required that applied the modified boundary layer model and calculated the strength parameters using back analysis. The numerical simulation results that consider the strength parameter one does with the present situation the establishment of the pile is completed, and the simulation is able to asses ground stability in complex terrain in a reliable manner. Also the somewhat it judges with the fact that it will be able to provide the fundamental data which secures the stability of the segment where it is unstable.

위상그래프와 회로망해석이론 I

  • 장세훈
    • 전기의세계
    • /
    • v.28 no.3
    • /
    • pp.27-34
    • /
    • 1979
  • 회로망을 해석하는데는 i) 지로해석법, ii) 루우프해석법, iii) 메슈해석법, iv) 마디해석법, v) 컷세트해석법및 vi) 상태공간해석법 등이 사용됨은 이미 알고 있다. 다루는 회로가 비교적 간단한 구성의 선형, 시불변 회로망이고 또한 종이와 연필로 회로망해석을 수행하여야 될때에는 익혀온 이들 해석법을 관례대로 따르면 될 것이나, 다룰려는 회로망이 대형인 복잡한 구조의 것이든지 혹은 비선형소자, 시변소자 등을 포함하는 경우에는 독립회로방정식들을 체계있게 세워 나가는데에도 어려움이 있거니와, 설혹 회로방정식군을 세웠다 하드라도 이들을 풀어 나가는데에도 이젠 우리가 할 수 있는 능력한계를 느끼게 된다. 전자계산기가 스스로 독립성을 지닌 필요한 개수의 회로망방정식들을 작성하고, 또한 풀이도 요구되는 특성을 갖는 회로망을 설계하여주면, 많은 수고와 번거로움이 덜어진다. 이러한 뜻에서 전산기의 활용에 의한 회로망의 해석, 설계 (computer oriented network analysis and synthesis)이론이 바람직하다. 여기서는 이러한 전산기의 사용에 의한 회로망의 해석, 설계이론의 기초가 되는 부분을 가려서 위상 그래프이론에 따른 회로망 해석방법을 해설한다.

  • PDF