DOI QR코드

DOI QR Code

Numerical Simulation of Cone Penetration Tests in Sand Ground Using Critical State Mohr Coulomb Plasticity Model

한계상태 Mohr Coulomb 소성 모델을 활용한 콘관입시험의 수치적 모사

  • Woo, Sang Inn (Dept. of Civil and Environmental Engrg., Hannam Univ.) ;
  • Chung, Choong-Ki (Dept. of Civil and Environmental Engrg., Seoul National Univ.)
  • 우상인 (한남대학교 토목환경공학전공) ;
  • 정충기 (서울대학교 건설환경공학과)
  • Received : 2019.01.08
  • Accepted : 2019.01.24
  • Published : 2019.02.28

Abstract

This study focuses on the numerical simulations of the cone penetration tests in a sand ground. The mechanical responses of sand were described using the modified Mohr Coulomb plasticity model based on the critical state soil mechanics. In the plasticity model, the dilatancy angle was not a constant, but a function of the distance to the critical state line from the current state of void ratio and mean effective stress. To simulate cone penetration tests numerically, this study relied on Lagrangian finite element method under the axisymmetric condition. To enable penetration of the cone penetrometer without tearing elements along the symmetric axis, the penetration guide concept was adopted in this study. The results of numerical simulations on the calibration chamber cone penetration tests had good agreement with the experimental results.

본 연구는 사질토 지반에서 수행되는 콘관입시험의 수치적 모사에 초점을 맞추고 있다. 지반은 한계상태 토질역학을 바탕으로 수정된 한계상태 Mohr Coulomb 소성 모델로 모사하였다. 한계상태 Mohr Coulomb 모델에서 팽창각은 상수가 아닌 현재상태와 한계상태 사이의 위상차의 함수로 표현된다. 수치적으로 콘관입시험은 대변위 해석을 요구하며, 이를 Lagrangian 유한요소법으로 해석하기 위해 관입 유도체 개념을 적용한 축대칭 조건 유한요소법을 이용하였다. 캘리브레이션 챔버에서 수행된 콘관입시험을 한계상태 Mohr Coulomb 모델을 이용하여 본 논문에서 제안된 유한 해석 기법을 적용한 결과, 실험 결과와 유사한 결과를 얻을 수 있었다.

Keywords

GJBGC4_2019_v35n2_37_f0002.png 이미지

Fig. 2. Geometry setting for the numerical simulation for the calibration chamber cone penetration tests

GJBGC4_2019_v35n2_37_f0004.png 이미지

Fig. 5. Distribution of horizontal displacement ux across the model ground of Case A (Left) and C (Right) at 5 sec of penetration

GJBGC4_2019_v35n2_37_f0005.png 이미지

Fig. 6. Distribution of horizontal displacement ux across the model ground of Case A (Left) and C (Right) at 10 sec of penetration

GJBGC4_2019_v35n2_37_f0006.png 이미지

Fig. 7. Distribution of horizontal displacement ux across the model ground of Case A (Left) and C (Right) at 20 sec of penetration

GJBGC4_2019_v35n2_37_f0007.png 이미지

Fig. 8. Distribution of horizontal displacement ux across the model ground of Case A (Left) and C (Right) at 30 sec of penetration

GJBGC4_2019_v35n2_37_f0008.png 이미지

Fig. 9. Distribution of vertical displacement uy across the model ground of Case A (Left) and C (Right) at 5 sec of penetration

GJBGC4_2019_v35n2_37_f0009.png 이미지

Fig. 10. Distribution of vertical displacement uy across the model ground of Case A (Left) and C (Right) at 10 sec of penetration

GJBGC4_2019_v35n2_37_f0010.png 이미지

Fig. 11. Distribution of vertical displacement uy across the model ground of Case A (Left) and C (Right) at 20 sec of penetration

GJBGC4_2019_v35n2_37_f0011.png 이미지

Fig. 12. Distribution of vertical displacement uy across the model ground of Case A (Left) and C (Right) at 30 sec of penetration

GJBGC4_2019_v35n2_37_f0012.png 이미지

Fig. 13. Distribution of the stress ratio M (=q/p' ) across the model ground of Case A (Left) and C (Right) at 5 sec of penetration

GJBGC4_2019_v35n2_37_f0013.png 이미지

Fig. 14. Distribution of the stress ratio M (=q/p' ) across the model ground of Case A (Left) and C (Right) at 10 sec of penetration

GJBGC4_2019_v35n2_37_f0014.png 이미지

Fig. 15. Distribution of the stress ratio M (=q/p' ) across the model ground of Case A (Left) and C (Right) at 20 sec of penetration

GJBGC4_2019_v35n2_37_f0015.png 이미지

Fig. 16. Distribution of the stress ratio M (=q/p' ) across the model ground of Case A (Left) and C (Right) at 30 sec of penetration

GJBGC4_2019_v35n2_37_f0016.png 이미지

Fig. 17. Cone resistance qc vs. penetration depth zp for (a) Case A, (b) Case B, (c) Case C, and (d) Case D; lines represents numerical results in this study and hollow symbols are experimental data for the calibration chamber tests from Salgado (1993)

GJBGC4_2019_v35n2_37_f0017.png 이미지

Fig. 1. Experimental data (hollow symbols) from Fukushima and Tatsuoka (1984) and corresponding simulation results (lines) for Toyoura sand under the isotropically-consolidated drained triaxial compression tests for various initial void ratio e0 and mean effective stress p'0

GJBGC4_2019_v35n2_37_f0018.png 이미지

Fig. 3. Progressive deformation of the mesh near the cone penetrometer in Case B at 27, 28, 29, and 30 sec of penetration

GJBGC4_2019_v35n2_37_f0019.png 이미지

Fig. 4. Progressive deformation of an element (which locates in the dot-lined circle in Fig. 3) at 27, 27.5, 28, 28.5, 29, 29.5, and 30 sec of penetration in Case B

Table 1. Experimental cases (Salgado 1993) numerically simulated in this study

GJBGC4_2019_v35n2_37_t0001.png 이미지

Table 2. Model parameters for Toyoura sand

GJBGC4_2019_v35n2_37_t0002.png 이미지

References

  1. Abbo, A. J. and Sloan, S. W. (1996), "An Automatic Load Stepping Algorithm with Error Control", International Journal for Numerical Methods in Engineering, 39, pp.1737-1759. https://doi.org/10.1002/(SICI)1097-0207(19960530)39:10<1737::AID-NME927>3.0.CO;2-5
  2. Been, K. and Jefferies, M. G. (1985), "A State Parameter for Sands", Geotechnique, Vol.35, No.2, pp.99-112. https://doi.org/10.1680/geot.1985.35.2.99
  3. Bolton, M. D. (1986), "The Strength and Dilatancy of Sand", Geotechnique, Vol.36, No.1, pp.65-78. https://doi.org/10.1680/geot.1986.36.1.65
  4. Coetzee, C. J., Vermeer, P. A., and Basson, A. H. (2005), "The Modelling of Anchors Using the Material Point Method", International Journal for Numerical and Analytical Methods in Geomechanics, 29, pp.879-895. https://doi.org/10.1002/nag.439
  5. Dafalias, Y. F. and Manzari, M. T. (2004), "Simple Plasticity Sand Model Accounting for Fabric Change Effects", Journal of Engineering Mechanics, Vol.130, No.6, pp.622-634. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(622)
  6. Dafalias, Y. F., Papadimitriou, A. G., and Li, X. S. (2004), "Sand Plasticity Model Accounting for Inherent Fabric Anisotropy", Journal of Engineering Mechanics, Vol.130, No.11, p.1319. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:11(1319)
  7. Dang, H. K. and Meguid, M. A. (2010), "Evaluating the Performance of an Explicit Dynamic Relaxation Technique in Analyzing Nonlinear Geotechnical Engineering Problems", Computers and Geotechnics, Elsevier Ltd, 37, pp.125-131. https://doi.org/10.1016/j.compgeo.2009.08.004
  8. Fukushima, S. and Tatsuoka, F. (1984), "Strength and Deformation Characteristics of Saturated Sand at Extremely Low Pressures", Soils and Foundations, Vol.24, No.4, pp.30-48. https://doi.org/10.3208/sandf1972.24.4_30
  9. Gomes, R. C., Santos, J. A., Razavi, A. M., and Lopez-Caballero, F. (2016), "Validation of a Strategy to Predict Secant Shear Modulus and Damping of Soils with an Elastoplastic Model", KSCE Journal of Civil Engineering, Vol.20, No.2, pp.609-622. https://doi.org/10.1007/s12205-015-0516-8
  10. Ho, T. Y. K., Jardine, R. J., and Anh-Minh, N. (2011), "Largedisplacement Interface Shear between Steel and Granular Media", Geotechnique, Vol.61, No.3, pp.221-234. https://doi.org/10.1680/geot.8.P.086
  11. Huang, W., Sheng, D., Sloan, S. W., and Yu, H. S. (2004), "Finite Element Analysis of Cone Penetration in Cohesionless Soil", Computers and Geotechnics, 31, pp.517-528. https://doi.org/10.1016/j.compgeo.2004.09.001
  12. Hugel, H. M., Henke, S., and Kinzler, S. (2008), "High-performance ABAQUS Simulations in Soil Mechanics", pp.192-205.
  13. Jamiolkowski, M., Lo Presti, D. C. F., and Manassero, M. (2003), "Evaluation of Relative Density and Shear Strength of Sands from CPT and DMT", Soil Behavior and Soft Ground Construction, pp. 201-238.
  14. Kardani, M., Nazem, M., Abbo, A. J., Sheng, D., and Sloan, S. W. (2012), "Refined h-adaptive Finite Element Procedure for Large Deformation Geotechnical Problems", Computational Mechanics, 49, pp.21-33. https://doi.org/10.1007/s00466-011-0624-3
  15. Kim, D. and Choo, Y. W. (2006), "Cyclic Threshold Shear Strains of Sands based on Pore Water Pressure Buildup and Variation of Deformation Characteristics", International Journal of Offshore and Polar Engineering, Vol.16, No.1, pp.57-64.
  16. Kishida, H. and Uesugi, M. (1987), "Tests of the Interface between Sand and Steel in the Simple Shear Apparatus", Geotechnique, Vol.37, No.1, pp.45-52. https://doi.org/10.1680/geot.1987.37.1.45
  17. Kramer, S. L. (1996), Geotechnical Earthquake Engineering, Prentice Hall, Upper Saddle River, NJ.
  18. Lam, S. Y., Ng, C. W. W., Leung, C. F., and Chan, S. H. (2009), "Centrifuge and Numerical Modeling of Axial Load Effects on Piles in Consolidating Ground", Canadian Geotechnical Journal, 46, pp.10-24. https://doi.org/10.1139/T08-095
  19. Li, X. S. (2002), "A Sand Model with State-dependent Dilatancy", Geotechnique, Vol.52, No.3, pp.173-186. https://doi.org/10.1680/geot.2002.52.3.173
  20. Li, X. S. and Dafalias, Y. F. (2000), "Dilatancy for Cohesionless Soils", Geotechnique, Vol.50, No.4, pp.449-460. https://doi.org/10.1680/geot.2000.50.4.449
  21. Li, X. S. and Dafalias, Y. F. (2002), "Constitutive Modeling of Inherently Anisotropic Sand behavior", Journal of Geotechnical and Geoenvironmental Engineering, Vol.128, No.10, pp.868-880. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(868)
  22. Li, X. S., Dafalias, Y. F., and Wang, Z. (1999), "State-dependent Dilatancy in Critical-state Constitutive Modelling of Sand", Canadian Geotechnical Journal, 36, pp.599-611. https://doi.org/10.1139/t99-029
  23. Li, X. S. and Wang, Y. (1998), "Linear Representation of Steadystate Line for Sand", Journal of Geotechnical and Geoenvironmental Engineering, Vol.124, No.12, pp.1215-1217. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1215)
  24. Loukidis, D., Chakraborty, T., and Salgado, R. (2008), "Bearing Capacity of Strip Footings on Purely Frictional Soil under Eccentric and Inclined Loads", Canadian Geotechnical Journal, 45, pp.768-787. https://doi.org/10.1139/T08-015
  25. Loukidis, D. and Salgado, R. (2009), "Modeling Sand Response Using Two-surface Plasticity", Computers and Geotechnics, 36, pp.166-186. https://doi.org/10.1016/j.compgeo.2008.02.009
  26. Lubliner, J. (1990), Plasticity Theory, Macmillan, New York, New York.
  27. Manzari, M. T. and Dafalias, Y. F. (1997), "A Critical State Twosurface Plasticity Model for Sands", Geotechnique, Vol.47, No.2, pp.255-272. https://doi.org/10.1680/geot.1997.47.2.255
  28. Mohammadi, S. and Taiebat, H. (2015), "H-Adaptive Updated Lagrangian Approach for Large-Deformation Analysis of Slope Failure", International Journal of Geomechanics, Vol.15, No.6, pp.1-13.
  29. Nazem, M., Kardani, M., Carter, J. P., and Sheng, D. (2012), "A Comparative Study of Error Assessment Techniques for Dynamic Contact Problems of Geomechanics", Computers and Geotechnics, Elsevier Ltd, 40, pp.62-73. https://doi.org/10.1016/j.compgeo.2011.09.006
  30. Nazem, M., Sheng, D., and Carter, J. P. (2006), "Stress Integration and Mesh Refinement for Large Deformation in Geomechanics", International Journal for Numerical Methods in Engineering, 65, pp.1002-1027. https://doi.org/10.1002/nme.1470
  31. Nazem, M., Sheng, D., Carter, J. P., and Sloan, S. W. (2008), "Arbitrary Lagrangian - Eulerian Method for Large-strain Consolidation Problems", International Journal for Numerical and Analytical Methods in Geomechanics, 32, pp.1023-1050. https://doi.org/10.1002/nag.657
  32. Papadimitriou, A. G. and Bouckovalas, G. D. (2002), "Plasticity Model for Sand under Small and Large Cyclic Strains: A Multiaxial Formulation", Soil Dynamics and Earthquake Engineering, Vol.22, No.3, pp.191-204. https://doi.org/10.1016/S0267-7261(02)00009-X
  33. Richart, F., Hall, J., and Woods, R. (1970), Vibrations of Soils and Foundations, International series in theoretical and applied mechanics, Prentice-Hall, Englewood Cliffs, NJ, NJ.
  34. Sabetamal, H., Nazem, M., Carter, J. P., and Sloan, S. W. (2014), "Large Deformation Dynamic Analysis of Saturated Porous Media with Applications to Penetration Problems", Computers and Geotechnics, Elsevier Ltd, 55, pp.117-131. https://doi.org/10.1016/j.compgeo.2013.08.005
  35. Salgado, R. (1993), "Analysis of Penetration Resistance in Sands", University of California, Berkeley.
  36. Sheng, D., Nazem, M., and Carter, J. P. (2009), "Some Computational Aspects for Solving Deep Penetration Problems in Geomechanics", Computational Mechanics, 44, pp.549-561. https://doi.org/10.1007/s00466-009-0391-6
  37. Sheng, D. and Sloan, S. W. (2001), "Load Stepping Schemes for Critical State Models", International journal for numerical methods in eng, 50, pp.67-93. https://doi.org/10.1002/1097-0207(20010110)50:1<67::AID-NME22>3.0.CO;2-N
  38. Shmertmann, J. (1978), Guidelines for Cone Penetration Test: Performance and Design.
  39. Sloan, S. W., Abbo, A. J., and Sheng, D. (2001), "Refined Explicit Integration of Elastoplastic Models with Automatic Error Control", Engineering Computations, Vol.18, No.1/2, pp.121-154. https://doi.org/10.1108/02644400110365842
  40. Sloan, S. W. and Booker, J. R. (1986), "Removal of Singularities in Tresca and Mohr-Coulomb Yield Functions", Communications in Applied Numerical Methods, 2, pp.173-179. https://doi.org/10.1002/cnm.1630020208
  41. Solowski, W. T. and Sloan, S. W. (2015), "Evaluation of Material Point Method for Use in Geotechnics", International Journal for Numerical and Analytical Methods in Geomechanics, 39, pp.685-701. https://doi.org/10.1002/nag.2321
  42. Stark, T. D. and Olson, S. M. (1995), "Liquefaction Resistance Using CPT and Field Case Histories", Journal of Geotechnical and Geoenvironmental Engineering, 121, pp.856-869. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:12(856)
  43. Susila, E. and Hryciw, R. D. (2003), "Large Displacement FEM Modelling of the Cone Penetration Test (CPT) in Normally Consolidated Sand", International Journal for Numerical and Analytical Methods in Geomechanics, 27, pp.585-602. https://doi.org/10.1002/nag.287
  44. Uesugi, M. and Kishida, H. (1986), "Frictional Resistance at Yield between Dry Sand and Mild Steel", Soils and Foundations, Vol.26, No.4, pp.139-149. https://doi.org/10.3208/sandf1972.26.4_139
  45. Vavourakis, V., Loukidis, D., Charmpis, D. C., and Papanastasiou, P. (2013), "A Robust Finite Element Approach for Large Deformation Elastoplastic Plane-strain Problems", Finite Elements in Analysis and Design, Elsevier, 77, pp.1-15. https://doi.org/10.1016/j.finel.2013.08.003
  46. Verdugo, R. and Ishihara, K. (1996), "The Steady Sate of Sandy Soils", Soils and Foundations, Vol.36, No.2, pp.81-91. https://doi.org/10.3208/sandf.36.2_81
  47. Vucetic, M. (1994), "Cyclic Treshold Shear Strains in Soil", Journal of Geotechnical Engineering, Vol.120, No.12, pp.2208-2228. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:12(2208)
  48. Woo, S. I. and Salgado, R. (2015), "Bounding Surface Modeling of Sand with Consideration of Fabric and Its Evolution during Monotonic Shearing", International Journal of Solids and Structures, 63, pp.227-288.
  49. Woo, S. I., Seo, H., and Kim, J. (2017), "Critical-state-based Mohr-Coulomb Plasticity Model for Sands", Computers and Geotechnics, 92, pp.179-185. https://doi.org/10.1016/j.compgeo.2017.08.001
  50. Yu, L., Liu, J., Kong, X. J., and Hu, Y. (2008), "Three-dimensional RITSS Large Displacement Finite Element Method for Penetration of Foundations into Soil", Computers and Geotechnics, Vol.35, No.3, pp.372-382. https://doi.org/10.1016/j.compgeo.2007.08.007