Browse > Article
http://dx.doi.org/10.7843/kgs.2019.35.2.37

Numerical Simulation of Cone Penetration Tests in Sand Ground Using Critical State Mohr Coulomb Plasticity Model  

Woo, Sang Inn (Dept. of Civil and Environmental Engrg., Hannam Univ.)
Chung, Choong-Ki (Dept. of Civil and Environmental Engrg., Seoul National Univ.)
Publication Information
Journal of the Korean Geotechnical Society / v.35, no.2, 2019 , pp. 37-51 More about this Journal
Abstract
This study focuses on the numerical simulations of the cone penetration tests in a sand ground. The mechanical responses of sand were described using the modified Mohr Coulomb plasticity model based on the critical state soil mechanics. In the plasticity model, the dilatancy angle was not a constant, but a function of the distance to the critical state line from the current state of void ratio and mean effective stress. To simulate cone penetration tests numerically, this study relied on Lagrangian finite element method under the axisymmetric condition. To enable penetration of the cone penetrometer without tearing elements along the symmetric axis, the penetration guide concept was adopted in this study. The results of numerical simulations on the calibration chamber cone penetration tests had good agreement with the experimental results.
Keywords
Numerical Analysis; Sand; Critical State; Mohr Coulomb Plasticity; Cone Penetration Test;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fukushima, S. and Tatsuoka, F. (1984), "Strength and Deformation Characteristics of Saturated Sand at Extremely Low Pressures", Soils and Foundations, Vol.24, No.4, pp.30-48.   DOI
2 Gomes, R. C., Santos, J. A., Razavi, A. M., and Lopez-Caballero, F. (2016), "Validation of a Strategy to Predict Secant Shear Modulus and Damping of Soils with an Elastoplastic Model", KSCE Journal of Civil Engineering, Vol.20, No.2, pp.609-622.   DOI
3 Ho, T. Y. K., Jardine, R. J., and Anh-Minh, N. (2011), "Largedisplacement Interface Shear between Steel and Granular Media", Geotechnique, Vol.61, No.3, pp.221-234.   DOI
4 Huang, W., Sheng, D., Sloan, S. W., and Yu, H. S. (2004), "Finite Element Analysis of Cone Penetration in Cohesionless Soil", Computers and Geotechnics, 31, pp.517-528.   DOI
5 Hugel, H. M., Henke, S., and Kinzler, S. (2008), "High-performance ABAQUS Simulations in Soil Mechanics", pp.192-205.
6 Jamiolkowski, M., Lo Presti, D. C. F., and Manassero, M. (2003), "Evaluation of Relative Density and Shear Strength of Sands from CPT and DMT", Soil Behavior and Soft Ground Construction, pp. 201-238.
7 Kardani, M., Nazem, M., Abbo, A. J., Sheng, D., and Sloan, S. W. (2012), "Refined h-adaptive Finite Element Procedure for Large Deformation Geotechnical Problems", Computational Mechanics, 49, pp.21-33.   DOI
8 Kim, D. and Choo, Y. W. (2006), "Cyclic Threshold Shear Strains of Sands based on Pore Water Pressure Buildup and Variation of Deformation Characteristics", International Journal of Offshore and Polar Engineering, Vol.16, No.1, pp.57-64.
9 Kishida, H. and Uesugi, M. (1987), "Tests of the Interface between Sand and Steel in the Simple Shear Apparatus", Geotechnique, Vol.37, No.1, pp.45-52.   DOI
10 Sheng, D., Nazem, M., and Carter, J. P. (2009), "Some Computational Aspects for Solving Deep Penetration Problems in Geomechanics", Computational Mechanics, 44, pp.549-561.   DOI
11 Sheng, D. and Sloan, S. W. (2001), "Load Stepping Schemes for Critical State Models", International journal for numerical methods in eng, 50, pp.67-93.   DOI
12 Shmertmann, J. (1978), Guidelines for Cone Penetration Test: Performance and Design.
13 Sloan, S. W., Abbo, A. J., and Sheng, D. (2001), "Refined Explicit Integration of Elastoplastic Models with Automatic Error Control", Engineering Computations, Vol.18, No.1/2, pp.121-154.   DOI
14 Solowski, W. T. and Sloan, S. W. (2015), "Evaluation of Material Point Method for Use in Geotechnics", International Journal for Numerical and Analytical Methods in Geomechanics, 39, pp.685-701.   DOI
15 Stark, T. D. and Olson, S. M. (1995), "Liquefaction Resistance Using CPT and Field Case Histories", Journal of Geotechnical and Geoenvironmental Engineering, 121, pp.856-869.   DOI
16 Susila, E. and Hryciw, R. D. (2003), "Large Displacement FEM Modelling of the Cone Penetration Test (CPT) in Normally Consolidated Sand", International Journal for Numerical and Analytical Methods in Geomechanics, 27, pp.585-602.   DOI
17 Uesugi, M. and Kishida, H. (1986), "Frictional Resistance at Yield between Dry Sand and Mild Steel", Soils and Foundations, Vol.26, No.4, pp.139-149.   DOI
18 Vavourakis, V., Loukidis, D., Charmpis, D. C., and Papanastasiou, P. (2013), "A Robust Finite Element Approach for Large Deformation Elastoplastic Plane-strain Problems", Finite Elements in Analysis and Design, Elsevier, 77, pp.1-15.   DOI
19 Been, K. and Jefferies, M. G. (1985), "A State Parameter for Sands", Geotechnique, Vol.35, No.2, pp.99-112.   DOI
20 Abbo, A. J. and Sloan, S. W. (1996), "An Automatic Load Stepping Algorithm with Error Control", International Journal for Numerical Methods in Engineering, 39, pp.1737-1759.   DOI
21 Bolton, M. D. (1986), "The Strength and Dilatancy of Sand", Geotechnique, Vol.36, No.1, pp.65-78.   DOI
22 Coetzee, C. J., Vermeer, P. A., and Basson, A. H. (2005), "The Modelling of Anchors Using the Material Point Method", International Journal for Numerical and Analytical Methods in Geomechanics, 29, pp.879-895.   DOI
23 Dafalias, Y. F. and Manzari, M. T. (2004), "Simple Plasticity Sand Model Accounting for Fabric Change Effects", Journal of Engineering Mechanics, Vol.130, No.6, pp.622-634.   DOI
24 Dafalias, Y. F., Papadimitriou, A. G., and Li, X. S. (2004), "Sand Plasticity Model Accounting for Inherent Fabric Anisotropy", Journal of Engineering Mechanics, Vol.130, No.11, p.1319.   DOI
25 Dang, H. K. and Meguid, M. A. (2010), "Evaluating the Performance of an Explicit Dynamic Relaxation Technique in Analyzing Nonlinear Geotechnical Engineering Problems", Computers and Geotechnics, Elsevier Ltd, 37, pp.125-131.   DOI
26 Li, X. S. and Dafalias, Y. F. (2000), "Dilatancy for Cohesionless Soils", Geotechnique, Vol.50, No.4, pp.449-460.   DOI
27 Kramer, S. L. (1996), Geotechnical Earthquake Engineering, Prentice Hall, Upper Saddle River, NJ.
28 Lam, S. Y., Ng, C. W. W., Leung, C. F., and Chan, S. H. (2009), "Centrifuge and Numerical Modeling of Axial Load Effects on Piles in Consolidating Ground", Canadian Geotechnical Journal, 46, pp.10-24.   DOI
29 Li, X. S. (2002), "A Sand Model with State-dependent Dilatancy", Geotechnique, Vol.52, No.3, pp.173-186.   DOI
30 Li, X. S. and Dafalias, Y. F. (2002), "Constitutive Modeling of Inherently Anisotropic Sand behavior", Journal of Geotechnical and Geoenvironmental Engineering, Vol.128, No.10, pp.868-880.   DOI
31 Li, X. S., Dafalias, Y. F., and Wang, Z. (1999), "State-dependent Dilatancy in Critical-state Constitutive Modelling of Sand", Canadian Geotechnical Journal, 36, pp.599-611.   DOI
32 Li, X. S. and Wang, Y. (1998), "Linear Representation of Steadystate Line for Sand", Journal of Geotechnical and Geoenvironmental Engineering, Vol.124, No.12, pp.1215-1217.   DOI
33 Loukidis, D., Chakraborty, T., and Salgado, R. (2008), "Bearing Capacity of Strip Footings on Purely Frictional Soil under Eccentric and Inclined Loads", Canadian Geotechnical Journal, 45, pp.768-787.   DOI
34 Loukidis, D. and Salgado, R. (2009), "Modeling Sand Response Using Two-surface Plasticity", Computers and Geotechnics, 36, pp.166-186.   DOI
35 Lubliner, J. (1990), Plasticity Theory, Macmillan, New York, New York.
36 Woo, S. I. and Salgado, R. (2015), "Bounding Surface Modeling of Sand with Consideration of Fabric and Its Evolution during Monotonic Shearing", International Journal of Solids and Structures, 63, pp.227-288.
37 Verdugo, R. and Ishihara, K. (1996), "The Steady Sate of Sandy Soils", Soils and Foundations, Vol.36, No.2, pp.81-91.   DOI
38 Vucetic, M. (1994), "Cyclic Treshold Shear Strains in Soil", Journal of Geotechnical Engineering, Vol.120, No.12, pp.2208-2228.   DOI
39 Sloan, S. W. and Booker, J. R. (1986), "Removal of Singularities in Tresca and Mohr-Coulomb Yield Functions", Communications in Applied Numerical Methods, 2, pp.173-179.   DOI
40 Woo, S. I., Seo, H., and Kim, J. (2017), "Critical-state-based Mohr-Coulomb Plasticity Model for Sands", Computers and Geotechnics, 92, pp.179-185.   DOI
41 Yu, L., Liu, J., Kong, X. J., and Hu, Y. (2008), "Three-dimensional RITSS Large Displacement Finite Element Method for Penetration of Foundations into Soil", Computers and Geotechnics, Vol.35, No.3, pp.372-382.   DOI
42 Nazem, M., Sheng, D., and Carter, J. P. (2006), "Stress Integration and Mesh Refinement for Large Deformation in Geomechanics", International Journal for Numerical Methods in Engineering, 65, pp.1002-1027.   DOI
43 Manzari, M. T. and Dafalias, Y. F. (1997), "A Critical State Twosurface Plasticity Model for Sands", Geotechnique, Vol.47, No.2, pp.255-272.   DOI
44 Mohammadi, S. and Taiebat, H. (2015), "H-Adaptive Updated Lagrangian Approach for Large-Deformation Analysis of Slope Failure", International Journal of Geomechanics, Vol.15, No.6, pp.1-13.
45 Nazem, M., Kardani, M., Carter, J. P., and Sheng, D. (2012), "A Comparative Study of Error Assessment Techniques for Dynamic Contact Problems of Geomechanics", Computers and Geotechnics, Elsevier Ltd, 40, pp.62-73.   DOI
46 Nazem, M., Sheng, D., Carter, J. P., and Sloan, S. W. (2008), "Arbitrary Lagrangian - Eulerian Method for Large-strain Consolidation Problems", International Journal for Numerical and Analytical Methods in Geomechanics, 32, pp.1023-1050.   DOI
47 Papadimitriou, A. G. and Bouckovalas, G. D. (2002), "Plasticity Model for Sand under Small and Large Cyclic Strains: A Multiaxial Formulation", Soil Dynamics and Earthquake Engineering, Vol.22, No.3, pp.191-204.   DOI
48 Richart, F., Hall, J., and Woods, R. (1970), Vibrations of Soils and Foundations, International series in theoretical and applied mechanics, Prentice-Hall, Englewood Cliffs, NJ, NJ.
49 Sabetamal, H., Nazem, M., Carter, J. P., and Sloan, S. W. (2014), "Large Deformation Dynamic Analysis of Saturated Porous Media with Applications to Penetration Problems", Computers and Geotechnics, Elsevier Ltd, 55, pp.117-131.   DOI
50 Salgado, R. (1993), "Analysis of Penetration Resistance in Sands", University of California, Berkeley.