• 제목/요약/키워드: 학습 횟수

검색결과 255건 처리시간 0.021초

학생 중도탈락 예측지수에 관한 사후검증 연구 (Post-Examination Analysis on the Student Dropout Prediction Index)

  • 이지은
    • 한국빅데이터학회지
    • /
    • 제4권2호
    • /
    • pp.175-183
    • /
    • 2019
  • 학습자 중도탈락은 사이버대학이 해결해야 할 과제 중 하나이다. 2019년도 기준으로 사이버대학의 전체 학생 수는 13만여 명에 달하고 있으나, 중도탈락 비율도 매우 높은 편이다. 중도탈락율을 낮추기 위해 사이버대학은 학습 분석에 많은 투자를 하고 있다. 특히 일부 사이버대학에서는 중도탈락 가능성을 정량적으로 분석하여 중도탈락이 우려되는 학생에 대한 지원을 강화하고 있다. 본 논문의 목적은 중도탈락 예측지수에 영향을 미치는 학습데이터를 규명하는데 있다. 분석 결과, 수강 차시(진도율), 이수학점, 평점, 휴학 횟수가 중도탈락에 유의미한 영향을 미치는 것으로 확인되었다. 사이버대학은 학생 중도탈락 예측지수에 관한 사후검증을 통해 예측 모델의 정확도를 높여나가야 할 것이다.

  • PDF

동적 근사곡선을 이용한 자기조직화 지도의 수렴속도 개선 (Improved Speed of Convergence in Self-Organizing Map using Dynamic Approximate Curve)

  • 길민욱;김귀정;이극
    • 한국멀티미디어학회논문지
    • /
    • 제3권4호
    • /
    • pp.416-423
    • /
    • 2000
  • 기존 Kohonen의 자기조직화 지도(self-organizing feature map)는 학습시 많은 입력 패턴이 필요하며 이에 따른 학습 시간 역시 증가하는 단점이 있다. 이러한 단점을 보완하기 위해 B. Bavarian은 위상학적 위치에 따라 각기 다른 학습률(learning rate)을 갖도록 하였으나 자기조직화가 정밀하게 되지 않는 단점을 갖고 있다. 본 논문에서는 자기조직화 지도의 학습시 계산량이 많은 가우시안 함수를 근사곡선(approximate curve)으로 변형하여 수렴속도를 향상시켰고 학습 횟수에 따라 근사곡선의 폭을 동적으로 변화시킴으로써 자기조직화지도의 수렴도를 개선하였다.

  • PDF

보로노이 공간분류를 이용한 오류 역전파 신경망의 설계방법 (A Design Method for Error Backpropagation neural networks using Voronoi Diagram)

  • 김홍기
    • 한국지능시스템학회논문지
    • /
    • 제9권5호
    • /
    • pp.490-495
    • /
    • 1999
  • 본 논문에서는 보로노이 다이아그램을 이용하여 오류 역전파 신경망의 초기값을 결정할수 있는 VoD_EBP를 제안하였다. VoD_EBP는 초기 연결 가중치와 임계값을 공학적 계산방법으로 결정함으로써 기존의 EBP에서 자주 발생하는 학습 마비 현상을 피할수 있고 초기부터 빠른 속도로 학습이 진행되므로 학습횟수를 단축시킬수 있다, 또한 VoD_EBP는 은닉층의 노드 수를 보로노이 다각형으로 구분된 클러스터들의 개수로 정할 수있어 신경망 설계에 신뢰성을 향상시켰다. 제시된 VoD_EBP의 효율성을 입증하기 위해 간단한 실험으로 2차원 입력벡터를 갖는 XOR 문제와 3차원 패리티 코드 검출 문제에 대하여 적용하여 보았다. 그 결과 임의의 초기값으로 설정하였던 EBP보다 훨씬 빠르게 학습이 종료되었고, 지역 최소치에 빠져 학습이 진행되지 못하는 현상이 발생하지 않았다.

  • PDF

시각장애를 가진 학습자를 위한 4개의 시작메뉴의 보편적 설계 (Universal Design of an Startup Screen for the Learners with Visual Impairment)

  • 김경희;이종원;박지수;손진곤
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.1807-1810
    • /
    • 2015
  • 모바일 기기의 화면 크기와 해상도의 발달로 모바일러닝은 시각장애인들의 이동성의 제한과 접근성의 문제를 해결해 줄 수 있는 학습방법이 되었다. 그러나 시각장애를 가진 학습자들은 메뉴 구조의 복잡성으로 인해 원하는 메뉴로 이동하는 것에 어려움을 겪고 있다. 본 논문에서는 이와 같은 문제점을 해결하기 위해 4개의 시작메뉴를 제안한다. 4개의 시작메뉴는 모바일 기기의 화면에 4개의 코너에 시작화면을 불러오는 영역을 제공하여 시작메뉴의 선택이 쉽고, 메뉴선택을 위한 반복적인 이동횟수와 메뉴구조의 복잡도를 줄일 수 있다. 따라서 4개의 시작메뉴는 시각장애를 가진 학습자가 모바일러닝 환경에서 모바일러닝 콘텐츠를 통한 학습이 쉽게 이루어지도 도와주어 즐겁게 지식과 기술을 습득하여 정보격차를 줄일 수 있다.

UCB를 이용한 강화학습 패킷 스케줄링 (Reinforcement learning packet scheduling using UCB)

  • 김동현;김민우;이병준;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제59차 동계학술대회논문집 27권1호
    • /
    • pp.45-46
    • /
    • 2019
  • 본 논문에서는 Upper Confidence Bound (UCB)를 이용한 효율적인 패킷 스케줄링 기법을 제안한다. 기존 e-greedy 등 강화학습의 보상을 극대화 할 수 있는 행동을 선택하는 것과 다르게, 제안된 UCB를 이용한 강화학습 패킷 스케줄링 기법은 각 상태에서 행동을 선택한 횟수를 추가적으로 고려한다. 이는 보다 효율적인 강화학습의 탐구(Exploration)를 가능케 한다. 본 논문에서는 컴퓨터 시뮬레이션을 통하여 제안하는 UCB를 이용한 강화학습 패킷 스케줄링 기법이 기존의 e-greedy 및 softmax를 기반으로 한 패킷 스케줄링 기법에 비해 정확도 측면에서 향상된 정확도를 보인다.

  • PDF

한국어 의존 관계 분석과 자질 집합 분할을 이용한 기계학습의 성능 개선 (Analysis of Korean Language Parsing System and Speed Improvement of Machine Learning using Feature Module)

  • 김성진;옥철영
    • 전자공학회논문지
    • /
    • 제51권8호
    • /
    • pp.66-74
    • /
    • 2014
  • 최근에 한국어 의존 관계에 대한 파싱 시스템과 관련된 연구가 소프트웨어 공학자들이나 언어학자들에 의해 다양하게 연구되고 있으며, 시스템 구현은 주로 기계 학습이나 기호 주의를 사용하고 있다. 기계 학습을 사용한 방법은 한국어 문장 데이터가 매우 크기 때문에 시스템 특성상 매우 긴 학습시간을 가지며, 데이터 자체가 가지는 오류로 인하여 한정된 인식율을 가진다. 본 연구에서는 기계학습을 이용한 시스템에 대하여 학습 시간을 줄일 수 있도록 특징들을 자질 집합 모듈로 분할하여 처리하는 방법을 제안하고, 문장수와 반복횟수에 따른 인식율을 분석하였다. 설계된 시스템은 분리된 모듈과 이진 검색을 위한 정렬 기법이 사용되었다. 데이터는 세종 말뭉치로부터 추출한 후 정제된 36,090문장을 사용하였다. 학습 시간은 약 3시간으로 줄었으며, 인식율은 10,000 문장을 50회 학습하였을 때 84.54%로 가장 높았다. 모든 학습 문장(32,481)을 10회 학습하였을 때 인식율은 82.99%이다. 결과적으로 정제된 데이터를 이용하여 시스템이 안정화될 때까지 반복하는 것이 더 효율적이었다.

디지털 스크린에서 작업기억의 음운고리를 촉진시키는 영어단어 제시 방법 (The way of displaying English words to facilitate phonological loops of working memory on the digital screen)

  • 권유안
    • 컴퓨터교육학회논문지
    • /
    • 제17권5호
    • /
    • pp.99-106
    • /
    • 2014
  • 본 연구는 영어 단어 학습의 핵심 인지기능인 작업기억의 음운고리를 적극적으로 활용하게 하는 영어 단어 제시 방법이 무엇이고 이 방법이 외국어 학습 동기 정도에 따라 효과가 다르게 나타나는지를 두실험을 통해 검증하였다. 실험1에서 학습자에게 음운고리를 최소 3회 사용하게 하는 제시 방법과 1회 사용하게 하는 제시 방법 그리고 자신이 제시 횟수 및 제시 시간을 조정할 수 있는 조건을 제시하였다. 실험1결과 3회 제시 조건이 1회 제시 조건에 비해 학습효과가 더 높게 나타났다. 실험2에서 외국어 학습 동기가 높은 집단과 낮은 집단에게 3회 제시 조건과 자기 조절 조건을 제시하여 학습 효과를 검증하였다. 실험2결과 고-동기 집단의 경우 제시 방법에 따른 학습의 정도는 차이가 없었지만, 저-동기 집단의 경우 자기 조절 조건에서 더 좋은 성과를 보였다. 이에 본 연구는 논의에서 컴퓨터 및 디지털 환경에서 영어 단어를 어떻게 제시해야 학습효과가 증진될 수 있는지를 제안하였다.

  • PDF

다층 퍼셉트론에서의 빠른 화자 적응을 위한 선택적 주의 학습 (Selective Attentive Learning for Fast Speaker Adaptation in Multilayer Perceptron)

  • 김인철;진성일
    • 한국음향학회지
    • /
    • 제20권4호
    • /
    • pp.48-53
    • /
    • 2001
  • 본 논문에서는 에러 역전파 알고리듬에 기반한 다층 퍼셉트론의 학습 속도를 개선하기 위해 선택적 주의 학습방식을 제안한다. 제안된 방식은 학습 과정에서 세 가지 선택적 주의 기준을 적용하여 학습 데이터베이스 내의 일부 데이터만을 입력 패턴으로 사용하거나 주어진 입력 패턴에 대해 신경회로망내의 특정 영역만 선택적으로 학습이 이루어지도록 한다. 이러한 선택적 주의 기준은 다층 퍼셉트론의 출력층에서 계산된 평균 자승 에러와 은닉층의 각 노드에서 획득된 클래스 의존적인 적합도(relevance)를 이용하여 설정된다. 학습 속도의 개선은 학습 반복 횟수 당 계산량을 줄임으로써 이루어진다. 본 논문에서는 고립 단어 인식시스템에서의 화자 적응 문제에 대해 제안한 선택적 주의 학습방법을 적용하여 그 유효성을 알아보았다. 실험 결과로부터 제안한 선택적 주의 기법이 학습 속도를 평균 60%이상 개선시킬 수 있음을 확인하였다

  • PDF

강화 학습법을 이용한 효과적인 적응형 대화 전략 (An Effective Adaptive Dialogue Strategy Using Reinforcement Loaming)

  • 김원일;고영중;서정연
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권1호
    • /
    • pp.33-40
    • /
    • 2008
  • 인간은 다른 사람과 대화할 때, 시행착오 과정을 거치면서 상대방에 관한 학습이 일어난다. 본 논문에서는 이런 과정의 강화학습법(Reinforcement Learning)을 이용하여 대화시스템에 적응형 능력의 부여 방법을 제안한다. 적응형 대화 전략이란 대화시스템이 사용자의 대화 처리 습성을 학습하고, 사용자 만족도와 효율성을 높이는 것을 말한다. 강화 학습법을 효율적으로 대화처리 시스템에 적용하기 위하여 대화를 주 대화와 부대화로 나누어 정의하고 사용하였다. 주 대화에서는 전체적인 만족도를, 부 대화에서는 완료 여부, 완료시간, 에러 횟수를 이용해서 시스템의 효율성을 측정하였다. 또한 학습 과정에서의 사용자 편의성을 위하여 시스템 사용 역량에 따라 사용자를 두 그룹으로 분류한 후 해당 그룹의 강화 학습 훈련 정책을 적용하였다. 실험에서는 개인별, 그룹별 강화 학습에 따라 제안한 방법의 성능을 평가하였다.

Generalized Clustering Network를 이용한 전방향 학습 알고리즘 (Feed-forward Learning Algorithm by Generalized Clustering Network)

  • 민준영;조형기
    • 한국정보처리학회논문지
    • /
    • 제2권5호
    • /
    • pp.619-625
    • /
    • 1995
  • 본 연구에서는 역전파(backpropagationlk)학습 알고리즘에 대체될 수 있는 전방향 학습 알고리즘에 준하는 혼합 인식모형을 구성한다. 본 알고리즘은 Nikhil R. Pal (1993)이 제안한 GLVQ(Generalized Learning Vector Quantization)를 이용하여 패턴을 클러스터링 한 다음 비유사성(dissimilarity)을 가진 패턴끼리 재구성(regrouping) 하여 단순 퍼셉트론(simple perceptron)을 이용하여 group별 학습을 한다. 일반적으로 역전파학습인 학습시간이 많이 소요된다는 단점이 있다[1]. 본 알고리즘의 특징으로 는 feed-forward학습이기 때문에 학습시간이 단축될 뿐만 아니라 전체 패턴을 그룹별 로 나누어 학습을 하기 때문에 인식률도 향상 시킬 수 있다. 본 알고리즘에 적용한 데 이타는 250개의 ASCII코드를 16$\times$8격자에 정규화시킨 비트 패턴(bit pattern)을 이용 하였다. 실험결과 250개의 패턴을 10개의 클러스터로 나누어 학습을 시켰을 때 각 클 러스터별 평균반복횟수 94.7회만에 250개의 ASCII코드를 100% 인식할 수 있었다.

  • PDF