For virtual education, the multimodal learning environment with haptic feedback, termed 'immersive textbook', is necessary to enhance the learning effectiveness. However, the learning contents for immersive textbook are not widely available due to the constraints in creation and playback environments. To address this problem, we propose a framework for producing and displaying the multimodal contents for immersive textbook. Our framework provides an XML-based meta-language to produce the multimodal learning contents in the form of intuitive script. Thus it can help the user, without any prior knowledge of multimodal interactions, produce his or her own learning contents. The contents are then interpreted by script engine and delivered to the user by visual and haptic rendering loops. Also we implemented a prototype based on the aforementioned proposals and performed user evaluation to verify the validity of our framework.
In this paper, we analyze the characteristics of machine learning workloads and, based on them, propose a distributed in-memory caching technique to improve the performance of machine learning workloads. The core of machine learning workload is model training, and model training is a computationally intensive task. Performing machine learning workloads in a Kubernetes-based cloud environment in which the computing framework and storage are separated can effectively allocate resources, but delays can occur because IO must be performed through network communication. In this paper, we propose a distributed in-memory caching technique to improve the performance of machine learning workloads performed in such an environment. In particular, we propose a new method of precaching data required for machine learning workloads into the distributed in-memory cache by considering Kubflow pipelines, a Kubernetes-based machine learning pipeline management tool.
Journal of the Institute of Electronics and Information Engineers
/
v.54
no.5
/
pp.35-41
/
2017
In this paper, we analyze the performance of the recently introduced Hint-knowledge distillation (KD) training approach based on the teacher-student framework for knowledge distillation and knowledge transfer. As a deep neural network (DNN) considered in this paper, the deep residual network (ResNet), which is currently regarded as the latest DNN, is used for the teacher-student framework. Therefore, when implementing the Hint-KD training, we investigate the impact on the weight of KD information based on the soften factor in terms of classification accuracy using the widely used open deep learning frameworks, Caffe. As a results, it can be seen that the recognition accuracy of the student model is improved when the fixed value of the KD information is maintained rather than the gradual decrease of the KD information during training.
The Journal of the Convergence on Culture Technology
/
v.5
no.2
/
pp.375-380
/
2019
In this paper, we study learning process mining and analytic technology based on open education platform. A study on mining through personal learning history log data based on an open education platform such as MOOC which is growing in interest recently. This technology is to design and implement a learning process mining framework for discovering and analyzing meaningful learning processes and knowledge from learning history log data. Learning process mining framework technology is a technique for expressing, extracting, analyzing and visualizing the learning process to provide learners with improved learning processes and educational services.
이미지 압축은 이미지 및 영상처리에서 주요한 역할을 하며, 자율주행, 클라우드, 영상 송출 등의 분야에서 빅데이터를 처리해야 하는 수요가 늘어남에 따라 지속적인 연구가 진행 중이다. 그 중심에는 딥러닝(deep learning)의 발전이 자리잡고 있으며, 심층 신경망(deep neural network)을 효과적으로 학습하는 알고리즘들을 적용한 논문들은 기존 압축 포맷인 JPEG, JPEG 2000, MPEG 등의 압축 성능을 뛰어넘는 결과를 보여 주고 있다. 이에 따라 JPEG AI는 딥러닝 기반 학습 이미지 압축의 표준을 제정하는 일을 진행 중이다. 본 기고에서는 JPEG AI가 표준화하고자 하는 기술과 JPEG AI에 제안한 압축 프레임워크들을 분석하고, 활용 사례들을 소개하여 JPEG AI 기반 학습 이미지 압축 모델의 동향에 대해 알아보고자 한다.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.311-313
/
2023
딥러닝에 대한 관심이 증가함에 따라 다양한 분야의 연구자 사이에 딥러닝 모델의 적용 및 재현이 중요한 작업으로 자리잡았다. 하지만 모델을 재현하고 활용하는데 있어 다양한 환경과 자원의 한계가 발생하여 문제가 되고 있다. 이러한 문제를 해결하기 위해 본 논문에서는 국가연구데이터커먼즈체계인 KRDC 프레임워크를 활용하여 딥러닝 학습 모델의 재현 방안을 제안하였다. 이를 통해 딥러닝 연구에 익숙하지 않은 사용자도 학습 모델의 적용 및 활용을 용이하게 할 수 있음을 확인하였다. KRDC 프레임워크는 사용자가 원하는 데이터와 태스크를 정의하고, 워크플로우로 구성, 학습 모델의 재현 및 활용을 지원한다.
Kim, Hoinam;Park, Jisu;Cha, Shin;Son, Kyung A;Yun, Young-Sun;Park, Jeon Gue
Journal of Software Assessment and Valuation
/
v.17
no.1
/
pp.101-113
/
2021
In this paper, we introduce a speaker overlap system and look at the process of converting the existed system on the specific framework of artificial intelligence. Speaker overlap is when two or more speakers speak at the same time during a conversation, and can lead to performance degradation in the fields of speech recognition or speaker recognition, and a lot of research is being conducted because it can prevent performance degradation. Recently, as application of artificial intelligence is increasing, there is a demand for switching between artificial intelligence frameworks. However, when switching frameworks, performance degradation is observed due to the unique characteristics of each framework, making it difficult to switch frameworks. In this paper, the process of converting the speaker overlap detection system based on the Keras framework to the pytorch-based system is explained and considers components. As a result of the framework switching, the pytorch-based system showed better performance than the existing Keras-based speaker overlap detection system, so it can be said that it is valuable as a fundamental study on systematic framework conversion.
Proceedings of the Korean Society of Computer Information Conference
/
2014.01a
/
pp.25-28
/
2014
에너지 자립섬은 외부 전력의 유입이 어려운 상황에서 풍력/태양광 발전과 같은 재생 에너지를 주요 발전원으로 운영하는 섬이다. 에너지 자립섬의 운영을 위해서는 전력 수요와 공급량을 예측하여 발전기, 송배전 시스템, ESS 등의 운영 계획 수립이 필요한데 수요 및 공급의 예측은 기상 상황 및 시간 등의 다양한 요소에 영향을 받으므로 예측이 어렵다. 이러한 특성을 감안하여 효율적인 전력망 운영을 위해 기계 학습을 기반으로 한 스마트 그리드 운영 프레임워크의 활용을 통해 이 문제를 해결하고자 한다. 본 논문에서는 자립섬 운영 계획 수립에 필요한 구성 요소를 파악하고 요소들 간의 연계 관계를 분석하여 운영 시스템의 프레임워크 설계안을 제시한다.
Journal of The Korean Association of Information Education
/
v.26
no.2
/
pp.129-140
/
2022
Our society is undergoing rapid changes due to COVID-19, and in particular, online learning using digital technology is being tried in various forms in the educational field. A change has occurred. However, the limitations of distance learning, such as reduced learning immersion in non-face-to-face educational situations, lack of interaction between teachers and learners, and lower basic academic ability, are constantly being raised, and an appropriate educational strategy is needed to solve these problems. This study focused on the concept of 'Metaverse' based on the interaction between the virtual world and the real world, and tried to verify the effectiveness of educational activities based on it. In detail, we propose an educational framework for realizing flipped learning in the Metaverse Virtual Classroom, and a frame developed by measuring the learning immersion of a single group with a teaching/learning program developed based on this. The effectiveness of the work was verified. When the metaverse platform-based flip learning framework and education program proposed in this study were applied, it was confirmed that learners' immersion in learning was improved.
The utilization of robot application is growing up in recent years, but there is a constraint to execute various application on the robot because of difference of robot resource. This paper presents the framework in order to solve the resource constraint by sharing resources with other devices near by robot. The framework defines common factors that are needed to collaboration work and provides APIs in order to implement robot application easily. Furthermore, We show the working flow of framework with physical training application using robot by example. The application shows how to collaborated work between robot and other devices through network.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.