• Title/Summary/Keyword: 학습 시간 예측 모델

Search Result 289, Processing Time 0.035 seconds

Advanced Estimation Model of Runway Visual Range using Deep Neural Network (심층신경망을 이용한 활주로 가시거리 예측 모델의 고도화)

  • Ku, SungKwan;Park, ChangHwan;Hong, SeokMin
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.491-499
    • /
    • 2018
  • Runway visual range (RVR), one of the important indicators of aircraft takeoff and landing, is affected by meteorological conditions such as temperature, humidity, etc. It is important to estimate the RVR at the time of arrival in advance. This study estimated the RVR of the local airport after 1 hour by upgrading the RVR estimation model using the proposed deep learning network. To this end, the advancement of the estimation model was carried out by changing the time interval of the meteorological data (temperature, humidity, wind speed, RVR) as input value and the linear conversion of the results. The proposed method generates estimation model based on the past measured meteorological data and estimates the RVR after 1 hour and confirms its validity by comparing with measured RVR after 1 hour. The proposed estimation model could be used for the RVR after 1 hour as reference in small airports in regions which do not forecast the RVR.

Predicting the Fetotoxicity of Drugs Using Machine Learning (기계학습 기반 약물의 태아 독성 예측 연구)

  • Myeonghyeon Jeong;Sunyong Yoo
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.490-497
    • /
    • 2023
  • Pregnant women may need to take medications to treat preexisting diseases or diseases that develop during pregnancy. However, some drugs may be fetotoxic and lead to, for example, teratogenicity and growth retardation. Predicting the fetotoxicity of drugs is thus important for the health of the mother and fetus. The fetotoxicity of many drugs has not been established because various challenges hinder the ability of researchers to determine their fetotoxicity. The need exists for in silico-based fetotoxicity assessment models, as they can modernize the testing paradigm, improve predictability, and reduce the use of animals and the costs of fetotoxicity testing. In this study, we collected data on the fetotoxicity of drugs and constructed fetotoxicity prediction models based on various machine learning algorithms. We optimized the models for more precise predictions by tuning the hyperparameters. We then performed quantitative performance evaluations. The results indicated that the constructed machine learning-based models had high performance (AUROC >0.85, AUPR >0.9) in fetotoxicity prediction. We also analyzed the feature importance of our model's predictions, which could be leveraged to identify the specific features of drugs that are strongly associated with fetotoxicity. The proposed model can be used to prescreen drugs and drug candidates at a lower cost and in less time. It provides a predictive score for fetotoxicity risk, which may be beneficial in the design of studies on fetotoxicity in human pregnancy.

Typhoon Track Prediction using Neural Networks (신경망을 이용한 태풍진로 예측)

  • 박성진;조성준
    • Journal of Intelligence and Information Systems
    • /
    • v.4 no.1
    • /
    • pp.79-87
    • /
    • 1998
  • 정확한 태풍진로 예측은 동아시아 최대의 자연재해인 태풍의 피해를 최소화하는데 필수적이다. 기상역학에 기초를 둔 수치모델과 회귀분석등의 통계적 접근법이 사용되어왔다. 본 논문에서는 비선형 신경망모델인 다층퍼셉트론을 제안한다. 즉, 태풍진로예측을 이동경로, 속도, 기압 등의 변수로 이루어진 시계열의 예측으로 본다. 1945년부터 1989년까지 한반도에 접근한 태풍 데이터를 이용하여 제안된 신경망을 학습한 후, 94, 95년도에 접근한 태풍의 진로를 예측하였다. 신경망의 예측성능은 수치모델의 성능보다 조금 우수하거나 비슷하였다. 신경망의 성능은 충분히 더 향상될 수 있는 여지가 있다. 또한, 고가의 슈퍼컴퓨터로 여러 시간 계산을 해야하는 수치모델에 비하여 PC상에서 수초만에 계산을 할 수 있는 신경망 모델은 비용 면에서도 장점이 있다.

  • PDF

Semi-Supervised Learning to Predict Default Risk for P2P Lending (준지도학습 기반의 P2P 대출 부도 위험 예측에 대한 연구)

  • Kim, Hyun-jung
    • Journal of Digital Convergence
    • /
    • v.20 no.4
    • /
    • pp.185-192
    • /
    • 2022
  • This study investigates the effect of the semi-supervised learning(SSL) method on predicting default risk of peer-to-peer(P2P) loans. Despite its proven performance, the supervised learning(SL) method requires labeled data, which may require a lot of effort and resources to collect. With the rapid growth of P2P platforms, the number of loans issued annually that have no clear final resolution is continuously increasing leading to abundance in unlabeled data. The research data of P2P loans used in this study were collected on the LendingClub platform. This is why an SSL model is needed to predict the default risk by using not only information from labeled loans(fully paid or defaulted) but also information from unlabeled loans. The results showed that in terms of default risk prediction and despite the use of a small number of labeled data, the SSL method achieved a much better default risk prediction performance than the SL method trained using a much larger set of labeled data.

Using Hidden Markov Model for Stock Flow Forecasting (주식 예측을 위한 은닉 마코프 모델의 이용)

  • Park, Hyoung-Joon;Hong, Da-Hye;Kim, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1860-1861
    • /
    • 2007
  • 주식 예측은 주식 시장이 생긴 이래로 투자자들이나, 금융 전문가들 사이에서 매우 중요한 일이 되어 왔다. 그러한 중요성으로 인해 엘리오트 파동이론과 같은 많은 주식 예측 기법이 제시되었고, 또한 이러한 예�G의 자동화를 위해 인공지능분야에서도 많은 연구가 있어왔다. 주가 예측에 패턴인식 방법을 적용한 기존의 연구로는 주로 ANN(Artificial Neural Network)방식과 은닉 마코프 모델(HMM, Hidden Markov Model)이 있었고, 본 논문에서는 HMM을 이용한 방법을 제안한다. HMM은 시간 순차적인 패턴을 가지는 모델의 인식에 좋은 성능을 보여 주로 음성인식 분야에서 많이 이용되고 있다. 주식 변화 역시 시간 순차적 흐름에 따라 기울기의 변화가 어느 정도 일정한 패턴을 가지는 성질이 있고, 이것은 HMM을 이용한 패턴인식으로 주식의 앞으로의 변화를 예측하기에 적합한 요인이 된다. 본 논문에서는 이를 위해 다음과 같은 과정을 걸쳤다. 첫 번째로 실존 회사의 장기간의 주식 테이터를 기반으로 여러 개의 HMM모델을 학습 하였다. 두 번째로 예측하고자 하는 기간 이전의 주식 변화 데이터를 입력으로 하여, 이전에 이와 유사한 패턴이 있었는지를 HMM을 통해 알아냈다. 마지막으로 이렇게 알아낸 패턴을 이용하여 앞으로의 주식 변화를 예측하였다. 실험은 실제 주식 변화와 예측값의 비교를 통해 정확도를 검증하였다.

  • PDF

Korean Natural Language Inference with Natural Langauge Explanations (Natural Language Explanations 에 기반한 한국어 자연어 추론)

  • Jun-Ho Yoon;Seung-Hoon Na
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.170-175
    • /
    • 2022
  • 일반적으로 대규모 언어 모델들은 다량의 데이터를 오랜시간 사전학습하면서 레이블을 예측하기 위한 성능을 높여왔다. 최근 언어 모델의 레이블 예측에 대한 정확도가 높아지면서, 언어 모델이 왜 해당 결정을 내렸는지 이해하기 위한 신뢰도 높은 Natural Language Explanation(NLE) 을 생성하는 것이 시간이 지남에 따라 주요 요소로 자리잡고 있다. 본 논문에서는 높은 레이블 정확도를 유지하면서 동시에 언어 모델의 예측에 대한 신뢰도 높은 explanation 을 생성하는 참신한 자연어 추론 시스템을 제시한 Natural-language Inference over Label-specific Explanations(NILE)[1] 을 소개하고 한국어 데이터셋을 이용해 NILE 과 NLE 를 활용하지 않는 일반적인 자연어 추론 태스크의 성능을 비교한다.

  • PDF

Improving Attention-based Video Highlight Prediction (어텐션 기반 비디오 하이라이트 예측 알고리즘의 개선)

  • Yoon, Wonbin;Hwang, Junkyu;Lee, Gyemin
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.314-317
    • /
    • 2021
  • 하이라이트 영상은 원본 영상의 중요한 장면들을 짧은 시간 안에 감상할 수 있게 도와준다. 특히나 경기 시간 긴 축구나 야구 그리고 e-스포츠의 시청자들에게 있어, 하이라이트 영상의 효용성은 더욱 증가한다. 하이라이트 영상 추출의 자동화로 방송사나 온라인 플랫폼은 비용 절감과 시간 절약의 이점을 얻을 수 있다. 따라서 본 논문에서는 스포츠 영상에서 자동으로 하이라이트 구간을 추출하는 모델을 제안한다. 제안하는 모델은 멀티 헤드 어텐션 매커니즘과 LSTM 네트워크의 결합으로 구성된다. 해당 매커니즘의 여러 헤드를 통해 어텐션을 다양한 관점에서 진행한다. 이로 인해 영상의 전체적인 맥락과 장면 간의 유기적 관계를 다양한 관점에서 파악할 수 있다. 또한 오디오와 이미지 정보를 함께 이용하여 모델을 학습한다. 학습한 모델의 평가는 e-스포츠 경기 영상을 이용하여 평가한다.

  • PDF

User Modeling based Time-Series Analysis for Context Prediction in Ubiquitous Computing Environment (유비쿼터스 컴퓨팅 환경에서 컨텍스트 예측을 위한 시계열 분석 기반 사용자 모델링)

  • Choi, Young-Hwan;Lee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.655-660
    • /
    • 2009
  • The context prediction algorithms are not suitable to provide real-time personalized service for users in context-awareness environment. The algorithms have problems like time delay in training data processing and the difficulties of implementation in real-time environment. In this paper, we propose a prediction algorithm with user modeling to shorten of processing time and to improve the prediction accuracy in the context prediction algorithm. The algorithm uses moving path of user contexts for context prediction and generates user model by time-series analysis of user's moving path. And that predicts the user context with the user model by sequence matching method. We compared our algorithms with the prediction algorithms by processing time and prediction accuracy. As the result, the prediction accuracy of our algorithm is similar to the prediction algorithms, and processing time is reduced by 40% in real time service environment.

Evaporative demand drought index forecasting in Busan-Ulsan-Gyeongnam region using machine learning methods (기계학습기법을 이용한 부산-울산-경남 지역의 증발수요 가뭄지수 예측)

  • Lee, Okjeong;Won, Jeongeun;Seo, Jiyu;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.617-628
    • /
    • 2021
  • Drought is a major natural disaster that causes serious social and economic losses. Local drought forecasts can provide important information for drought preparedness. In this study, we propose a new machine learning model that predicts drought by using historical drought indices and meteorological data from 10 sites from 1981 to 2020 in the southeastern part of the Korean Peninsula, Busan-Ulsan-Gyeongnam. Using Bayesian optimization techniques, a hyper-parameter-tuned Random Forest, XGBoost, and Light GBM model were constructed to predict the evaporative demand drought index on a 6-month time scale after 1-month. The model performance was compared by constructing a single site model and a regional model, respectively. In addition, the possibility of improving the model performance was examined by constructing a fine-tuned model using data from a individual site based on the regional model.

A Machine Learning System for Laundry Drying Time Prediction (빨래 건조시간 예측을 위한 기계학습 시스템)

  • Sagong, Hoon;Nam, Seong Ho;Yun, Seungwon;Park, Jang Su;You, Wonsang
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.91-93
    • /
    • 2022
  • 빨래 건조대는 국내에서 빨래 건조를 위해 주로 사용되지만, 건조 알림 기능이 없어 빨래 건조기에 비하여 사용상의 불편함이 따른다. 본 연구에서는 다항회귀(polynomial regression) 기계학습 모델을 사용하여 빨래 건조시간 예측이 가능한 스마트 빨래 건조 알림 시스템을 제안하였다. 제안된 다항회귀 알고리즘은 빨래 건조대에 부착된 수분센서로부터 측정된 수분량 데이터로부터 옷감 종류에 따른 빨래 건조 시간을 예측하는데 선형회귀보다 높은 정확도를 보였다(면 97.5>95.3%, 합성섬유 94.8>92.8%).