• 제목/요약/키워드: 학습속도

검색결과 1,109건 처리시간 0.039초

동기식 분산 딥러닝 환경에서 배치 사이즈 변화에 따른 모델 학습 성능 분석 (A Performance Analysis of Model Training Due to Different Batch Sizes in Synchronous Distributed Deep Learning Environments)

  • 김예랑;김형준;유헌창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.79-80
    • /
    • 2023
  • 동기식 분산 딥러닝 기법은 그래디언트 계산 작업을 다수의 워커가 나누어 병렬 처리함으로써 모델 학습 과정을 효율적으로 단축시킨다. 배치 사이즈는 이터레이션 단위로 처리하는 데이터 개수를 의미하며, 학습 속도 및 학습 모델의 품질에 영향을 미치는 중요한 요소이다. 멀티 GPU 환경에서 작동하는 분산 학습의 경우, 가용 GPU 메모리 용량이 커짐에 따라 선택 가능한 배치 사이즈의 상한이 증가한다. 하지만 배치 사이즈가 학습 속도 및 학습 모델 품질에 미치는 영향은 GPU 활용률, 총 에포크 수, 모델 파라미터 개수 등 다양한 변수에 영향을 받으므로 최적값을 찾기 쉽지 않다. 본 연구는 동기식 분산 딥러닝 환경에서 실험을 통해 최적의 배치 사이즈 선택에 영향을 미치는 주요 요인을 분석한다.

성인학습원리에 기반한 원격교육용 컨텐츠 개발 전략 (A Study of Adult Learning Principles baesd for e-Learning Contents Development Strategy)

  • 장세희;김영식
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 추계학술발표대회(하)
    • /
    • pp.872-875
    • /
    • 2003
  • 본 연구에서는 자원에의 접근성 측면에서 성인 학습자들의 학습 효율성을 제고하기 위하여 학습자들의 교수-학습 방법, 학습속도, 학습능력, 학습여건 등 개인차가 다른 학습자들에게 다양한 학습선택권을 충분히 보장할 수 있는 e-learning 환경에 대한 고찰과 성인학습이론을 기반으로 성인학습자의 특성에 적합한 교수-학습 전략을 제안 하고자 한다.

  • PDF

온라인 교육 환경에서 효율적 학습자 문제추천을 위한 스마트 컨트랙트 연구 (Smart contract research for efficient learner problem recommendation in online education environment)

  • 민연아
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.195-201
    • /
    • 2022
  • 학습자 주도의 지속적 원격교육 환경을 위하여 학습자의 정확한 학습 패턴을 고려한 올바른 문제 추천 가이드에 대한 필요성이 증대하고 있다. 본 논문에서는 원격교육환경에서 수집되는 학습자의 문제패턴에 대하여 상황별 가중치를 부여하여 해당 데이터를 기반의 개별 학습자의 최적 문제추천 경로를 제시하는 방법으로 블록체인 기반 스마트 컨트랙트 기술을 연구하였다. 본 연구의 성능평가를 위하여 기존 유사 학습 환경과의 학습만족도 및 문제추천가이드의 유용성과 학습자 데이터 처리속도를 분석하였으며 본 연구를 통하여 15% 이상 학습 만족도 향상과 기존 학습 환경 대비 20% 이상의 학습데이터 처리속도향상을 확인하였다.

강화학습 기반 고속도로 갓길차로제 운영 알고리즘 개발 연구 (Study on the Development of an Expressway Hard Shoulder Running Algorithm Using Reinforcement Learning)

  • 정하림;박상민;강성관;윤일수
    • 한국ITS학회 논문지
    • /
    • 제22권4호
    • /
    • pp.63-77
    • /
    • 2023
  • 본 연구는 고속도로 상의 반복적인 교통 혼잡 문제를 해결하기 위한 현실적인 대안 중 하나인 고속도로 갓길차로제를 효과적으로 운영하기 위해 강화학습 기법을 적용하고자 하였다. 강화학습의 DQN을 활용한 갓길차로제 운영 알고리즘을 개발하였고 미시교통시뮬레이션 프로그램 VISSIM을 활용하여 경부선 기흥IC-수원IC 구간의 데이터를 활용하여 강화학습 에이전트를 학습시켰고 그 효과를 평가하였다. 효과평가는 크게 이동성과 안전성의 두 가지 측면에서 진행하였다. 분석 결과 DQN 기반 갓길차로제 운영을 통해 시간당 최대 26km/h의 속도 개선 효과가 발생하였으며, DQN 에이전트는 기존 운영 기준인 60km/h 보다 약 10km/h 높은 속도로 갓길 차로제를 운영하였다. 안전성 효과의 경우 기존 운영 방식과 DQN 기반 운영을 통해 발생되는 차량 간 상충건수를 비교하였고 산출된 상충건수의 차이가 크지 않아 10km/h의 운영 기준 속도의 차이가 큰 영향을 주지 않은 것으로 판단하였다. 이러한 결과를 종합적으로 고려할 때 강화학습 기반 고속도로 갓길차로제 운영은 이동성 측면에서는 분명한 효과가 존재하였고 현재 운영 기준 속도의 조정을 고려해볼 필요가 있을 것으로 판단된다.

적응적 학습파라미터를 이용한 독립성분분석의 성능개선 (Performance Improvement of Independent Component Analysis by Adaptive Learning Parameters)

  • 조용현;민성재
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 춘계학술발표대회논문집
    • /
    • pp.210-213
    • /
    • 2003
  • 본 연구에서는 뉴우턴법의 고정점 알고리즘에 적응 조정이 가능한 학습파라미터를 이용한 신경망 기반 독립성분분석기법을 제안하였다. 이는 고정점 알고리즘의 1차 미분을 이용하는 뉴우턴법에서 역혼합행렬의 경신 상태에 따라 학습율과 모멘트가 적응조정되도록 함으로써 분리속도와 분리성능을 개선시키기 위함이다. 제안된 기법을 512$\times$512 픽셀의 10개 영상으로부터 임의의 혼합행렬에 따라 발생되는 영상들의 분리에 적용한 결과, 기존의 고정점 알고리즘에 의한 결과보다 우수한 분리성능과 빠른 분리속도가 있음을 확인하였다.

  • PDF

신경망 기반 음원 분리 시스템의 학습 속도 향상을 위한 음역대 강조 기법 (Frequency Range Enhancement for Faster Convergence of Neural Music Source Separation Systems)

  • 김민석;최우성;정순영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.567-569
    • /
    • 2020
  • 여러 악기가 섞여 있는 음원으로부터 원하는 악기 소리를 추출하는 음원 분리 기법 중 최근 신경망 기반 시스템이 활발히 연구되고 있다. 악기마다 고유의 음역대를 가진다는 사실에 감안하여, 연구진은 기존 음원 분리 신경망에 적은 수의 학습 파라미터를 추가하여 학습 속도를 대폭 향상시킬 수 있는 음역대 강조 기법을 제안한다.

강화학습의 Q-learning을 위한 함수근사 방법 (A Function Approximation Method for Q-learning of Reinforcement Learning)

  • 이영아;정태충
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권11호
    • /
    • pp.1431-1438
    • /
    • 2004
  • 강화학습(reinforcement learning)은 온라인으로 환경(environment)과 상호작용 하는 과정을 통하여 목표를 이루기 위한 전략을 학습한다. 강화학습의 기본적인 알고리즘인 Q-learning의 학습 속도를 가속하기 위해서, 거대한 상태공간 문제(curse of dimensionality)를 해결할 수 있고 강화학습의 특성에 적합한 함수 근사 방법이 필요하다. 본 논문에서는 이러한 문제점들을 개선하기 위해서, 온라인 퍼지 클러스터링(online fuzzy clustering)을 기반으로 한 Fuzzy Q-Map을 제안한다. Fuzzy Q-Map은 온라인 학습이 가능하고 환경의 불확실성을 표현할 수 있는 강화학습에 적합한 함수근사방법이다. Fuzzy Q-Map을 마운틴 카 문제에 적용하여 보았고, 학습 초기에 학습 속도가 가속됨을 보였다.

신경회로망을 이용한 유도전동기의 속도 센서리스 방식에 대한 비교 (Comparison of Different Schemes for Speed Sensorless Control of Induction Motor Drives by Neural Network)

  • 국윤상;김윤호;최원범
    • 전력전자학회논문지
    • /
    • 제5권2호
    • /
    • pp.131-139
    • /
    • 2000
  • 일반적으로 시스템 인식과 제어에 이용하는 다층 신경회로망은 기존의 역전파 알고리즘을 이용한다. 그러나 결선강도에 대한 오차의 기울기를 구하는 방법이기 때문에 국부적 최소점에 빠지기 쉽고, 수렴속도가 매우 늦으며 초기 결선강도 값들이나 학습계수에 민감하게 반응한다. 이와 같은 단점을 개선하기 위하여 확장된 칼만 필터링 기법을 역전파 알고리즘에 결합하였으나 계산상의 복잡성 때문에 망의 크기가 증가하면 실제 적용할 수 없다. 최근 신경회로망을 선형과 비선형 구간으로 구분하고 칼만 필터링 기법을 도입하여 수렴속도를 빠르게 하고 초기 결선강도 값에 크게 영향을 받지 않도록 개선하였으나, 여전히 은닉층의 선형 오차값을 역전파 알고리즘에 의해서 계산하기 때문에 학습계수에 민감하다는 단점이 있다. 본 논문에서는 위에서 언급한 기존의 신경회로망 알고리즘의 문제점을 개선하기 위하여 은닉층의 목표값을 최적기법에 의하여 직접계산하고 각각의 결선강도 값은 반복최소 자승법으로 온라인 학습하는 알고리즘을 제안하고 이들 신경회로망 알고리즘과 비교하고자 한다. 여러 가지 시뮬레이션과 실험을 통하여 제안된 방법이 초기 결선강도에 크게 영향을 받지 않으며, 기존의 학습계수 선정에 따른 문제점을 해결함으로써 신경회로망 모델에 기초한 실시간 제어기 설계에 응용할 수 있도록 하였다. 또한, 유도전동기의 속도추정과 제어에 적용하여 좋은 결과를 보였다.

  • PDF

조합형 학습알고리즘의 신경망을 이용한 데이터의 효율적인 특징추출 (An Efficient Extraction of Data Feature By Using Neural Networks of Hybrid Learning Algorithm)

  • 조용현;윤중환;박용수
    • 정보처리학회논문지B
    • /
    • 제8B권2호
    • /
    • pp.130-136
    • /
    • 2001
  • 본 논문에서는 새로운 학습알고리즘의 비선형 주요성분분석 신경망을 이용한 영상데이터의 효율적인 특징추출에 대하여 제안한다. 제안된 학습알고리즘에서는 최적해로 수렴하는 과정에서 발생할 수도 있는 진동을 억제하여 빠른 속도의 수렴이 가능하도록 하기 위해 모멘트를 이용하였고, 국소최적해를 만났을 때 이를 벗어난 전역최적해로의 수렴을 위한 새로운 연결가중치의 설정을 위하여 동적터널링을 이용함으로써 빠른 수렴속도로 전역최적해에 수렴되도록 학습시킬 수 있다. 제안된 학습알고리즘을 이용한 신경망을 256$\times$256 픽셀의 간암영상과 128$\times$128 픽셀의 얼굴영상을 대상으로 실험한 결과, 기울기하강의 학습알고리즘을 이용한 기존 비선형 주요성분분석 신경망보다 우수한 수렴성능과 특징추출성능이 있음을 확인 할 수 있었다.

  • PDF

비교사 신경망을 통한 심전도 진단의 효율적 학습을 위한 GCS 알고리즘 (GCS algorithm for efficient learning in ECG classification by unsupervised ANN)

  • 오영재;이종호;김태선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2537-2539
    • /
    • 2004
  • SOM은 심전도 신호의 진단에 있어서 효과적인 Clustering을 해주는 신경망이라는 것을 몇몇의 실험을 통하여 알 수 있었다. [1] 하지만 출력노드의 크기를 임의로 지정해야 하는 문제점이 있고 일반적으로 출력층의 크기가 클수록 진단결과는 좋지만 인간시간은 오래걸린다는 단점이 있다. 따라서 진단능력과 학습속도 사이의 균형에 관련된 문제가 대두되게 된다. 본 논문에서는 이러한 문제점을 극복하고자 기존의 SOM 신경망의 단점을 보완하고자 GCS(Growing Cell Structures)를 이용한 심전도의 학습속도와 분류능력 사이의 효율성 개선 방안을 제안한다. 이 방범은 GCS를 이용하여 적절한 노드의 수를 찾아내는 것이다. 이를 이용한 심전도 진단의 실험을 통해 기존의 SOM이 할 수 없었던 자체적인 출력노드의 증감을 행함을 확인할 수 있었다. 또한 출력노드의 감소로 인해 연산량이 줄어 학습시간의 효율성이 증가하였다.

  • PDF