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Comparison of Different Schemes for Speed Sensorless Control of Induction
Motor Drives by Neural Network

Yoon-Sang Kook, Yoon- Ho Kim, Won-Byum Choi
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ABSTRACT

In general, as the model for system identification, a widely used training method for a feedforward
multi - layer neural network is back-propagation algorithm, which is an iterative gradient algorithm. Although it
has worked successfully, the back-propagation algorithm have several limitations. The long and unprecictable
training process is the most troublesome, for example the rate of convergence is seriously affected by the initial
weights and the leamning rate of the parameters. An extended Kalman filtering to improve this problem is
incorporated, however, the computational complexity of this algorithm becomes mtractable as the size of the
multi-layer neural network increases. Recently, another modified algorithm to be partitioned into linear and
nonlinear portions was derived. This techmque is faster and more stable than the classical back-propagation
algorithm. However, since it uses a modified form of the hack-propagation algorithm to mimmize the
mean-square error, it i3 not a stable learning algorithm. In this paper, to determine the desired target in the
hidden layers a new approach for the on-line learming process of multi-layer neural network using the
recursive least squares type algorithm is proposed. This new technique is less sensitive to the imitial weights
and to the learning parameters,

Comparisons of the three algonthms are made through a system identification problem. The number of
iterations required to converge and the mean-squared error between the desired and actual outputs is compared
with respect to each method The theoretical analysis and experimental results are discussed. Also, these
algonthms are used to provide a real-time adaptive identification of motor speed for induction moter drives.
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Key words : BP(back-propagation), EKF(Extended Kalman Filter), RLS(Recursive Least Squares),

NN(Neural Network)

1. INTRODUCTON

System identification 1s a process aimed at
cstablishing an adequate input/output relationship for
unknown systems, and it 15 usually the first step
taken by control engineers since control theory
requires that we understand a system before we try
to control it. Since the inception of artificial neural
networks(ANN) many researchers have explored a
wide variety of applications including identification
of nonlinear dynamical System.[-]-| Some  of the
advantages of using ANN as the model for system
identification are : (i) ability lo approximate
arbitrary nonlinear functions to any degree of
accuracy; (i) they are adaptive, thus they can take
data and learn from it, often capturing subtle
relationships; (i) they can generalize, therefore they
can handle corrupt or incomplete data, thus
providing a measure of fault tolerance ; and (iv)
they are highly parallel which allows numerous
independent executed
simultaneously.[21

In general, an artificial newral network has a
multi-layer nretwork structure. A widely used
training method for a feed—forward multi-layer
neural network (MNN) is the back-propagation
algorithm developed by Rumelhart et al. in 1936,
which is an iteralive gradient algorithm designed to
minimize the mean- square error between the desired
output and the actual output for a particular input
to the network with respect to the W(—:ights.[‘?J
Although it has worked successfully for a wide
variety of applications, the standard back-propagation
learning algorithm has several limitations. The long
and unpredictable training process is the most
troublesome, for example the rate of convergence is
seriously affected by the imtial weights and the
learning rate of the parameters. In general, increasing
the learning step size can speed up the convergence
rate of the learming process, but it may also lead to
divergence, paralysis, or continuous instabi]jty.m

operations to be

Many researchers have proposed modification of
the classical back-propagation algorithm. Wasserman
incorporates  several heuristics laws in  the
back-propagation algorithm, but they are difficult to
describe systen“latic:ally.L'1J Singhal  and  Wu
incorporated a extended Kalman filering to improve
the standard Steepest Descent technique.m' However,
the computational complexity of this algorithm
becomes intractahle as the size of the MNN
increases. Recently, another modified algorithm was
derived hy Scalero and Tepedelenliogu as an
allernative to the back-—propagation algorithm. It
uses a modified form of the hack-propagation
algorithm to minimize the mean—square error
between the desired output and the actual output
with respect to the summation output (inputs to the
nonlinearities). However, it is not a stable learning
algorithm in practical real-life applications.fﬁ] Thus, a
faster and more stable learming algorithm is desired
and that is indeed the main purpose of this paper.

In this paper, & new approach for the on-line
learning process of multi-layer neural network using
the rccursive least squares type algorithm is
proposed. This method minimizes the global sum of
the squared errors Dbetween the actual and the
desired output values iteratively. This new technique
1s less sensitive to the initial weights and to the
learning parameters. Comparisons of the three
algorithms are made through a system identilication
problem. The number of iterations required to
converge and the mean-squared error between the
desired and actual outputs is compared with respect
to each method The theoretical analysis and
experimental results are discussed. Also, these
algorithms are used to provide a real-time adaptive
identification of motor speed for induction motor
drives.

Those considered in  this paper include
gradient-descent  back-propagation, the cxtended
Kalman filter neural network algorithm, the
recursive lease squares neural network algorithm,
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2. FLUX ESTIMATOR

Induction motor rotor fluxes are selected to
represent the desired and estimated state variable.
The following two independent estimators, in the
stationary frame, are generally used to derive thesc
rotor fluxes.

2.1 Current Model of Rotor Circuit

The rotor flux estimator can be formed if the
stator current and the rotor speed are measured in
real time. It can be represented as follows.

— . Lm .
B vrom = (—LH w,]) B o + 22 (D)
T, T,
where the symbol ”.” denotes the time denvative,

"

" denotes the estimated value, "s” denotes the
stationary frame.

7,=L./R. : rotor time constant,

L, : rotor inductance, @, : rotor angular velocity,

-
+ PR ;9
R, . rotor resistance, s = I:[da ’q.,] . stator current,

¥ _|as 3 a
;qur_cm - [A‘dr_cm gr_cm ] 1 rtolor ﬂux,

L, : mutual inductance,
1 0 0 -1
I = J=
o 1], 771 o

2.2 Voltage Model of Stator Circuit

The voltage model utilizes the stator voltages and
currents, but not the rotor velocity. It is commonly
used to implement direct field orientation without
speed sensors for low cost drive applications. The
rotor fluxes in the stationary d-q reference frame
can be obtained,

Parm = 2V~ R )~ oLy O

n

where 0=1-L3/L.L, : leakage inductance, Ls, R: :

i ki & "
stator inductance and resistance, Vs = ["ds "qs]

= [;l’dr vm z’qr-_vm] : rotor flux.

stator voltage, Adgr_m

3. THE NEWLY PROPOSED SPEED
SENSORLESS CONTROL ALGORITHM

3.1 Learning algorithm via the Back—Propagation
The back-propagation algorithm can be summarized

131

as follows.
w, ) =w, T )+ Aw," () @)

where, W, denotes the weight from the ith neuron

at the 4#-1 layer to the Jth neuwron at the kth
layer.

AwﬂH‘k (t)=né ,/‘0,/‘_1 + CI{AWNII_I‘Ir (t-1)

g,= (tf -9, ) ’("/A) for the output layer

5 - -k 6 W

= (l’ ); My for the hidden layer

where the training coefficient 7 represents the
learning rate, (he momentum ¢ determines the
effect of the past weight changes on the cwrent

i

weight, % is the tolal input to the /th neuron at

the &th layer, 9, is error signal in the Jth neuron,

14 Q

i is the desired oulput in the /th newon, 2
denotes the output of the /th newon from the
activation function.

where F() is called the activation function
represented as :

X

=1 )= e 1) @

The back-propagation training algorithm is an
iterative gradient algorithm designed to minimize the
mean square error between the actual output of a
feed—forward net and the desired output. Since the
learning rate is constant, the larger this constant,
the larger the changes in weights. For practical
purpose we choose a learnming rate that is as large
as possible without leading to oscillation. One way
to increase the learning rate without leading to
oscillation is to include a momentum term.
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3.2 Learning algorithm via the Extended
Kalman Filter
Our leamning strategy is based on regarding of a
network as an identification problem of constant
parameters. Consider the estimation of weights
between the (M =Dth layer and the Mth layer.

The multi-layer neural network is expressed by the

following models with non-linear observation
equations -
W+ )=, )+ S () )
7 +1)=hlw, (¢ +1)+v(+1)
=0, (t+1)+v(t+1) ©)

where V is the desired state of an oulpul unit,

L)o@ are mutually independent, zero-mean
noises with covariance matrix € and R regarded
as a modeling error. Note that they can be
considered pseudo-noises for tumng the gamn of the
extended Kalman filter. The application of the EKF
to (b) and (6) gives the following real-time learning
algorithms :

w, (+)=w, )+ K, Oy, 0)-0," ()] o

where

_ P.e+10)H )
7, (p, (+110)H,0) +R|

90

F_‘ii([-f_]lt): P/i(t|t)+Q
P +11i+1)=1-K ()H, () P, (+1]2)

f'(ij & ):)II(—I

€,

-1k
The filtered estimates of W. , k=M -1...,2 4

t+1 are obtained by the following extended Kalman
flter :
1Kiﬂl—l‘k (t + ]): w“/.—l.k (Z)+ Tl,—,-k_l‘k (t)5]k0[k~l

(8)

where,

p ()= Pﬂk—l‘k (t+1/t)
" [, Y B, e+ y0)H , ()+ R]
wj,k""'15,"'"l Jork=M-1---,2

Jor k=M

. . s .. I _ — k-Lik
with initial conditions W. = ©)=W, and

Pllk_l g (O | 0)= P]Ik_I * (O)_

As previously the
back-propagation algorithm has several limitations :
(i) the rate of convergence is seriously affected by
Imitial weights and the learmng rates of the
parameters; and (1) paralysis, divergence,
continuous instahility could result if the step size is
too large. This algorithm has the featurc that the
learming rate is time dependent, whereas the BP
algorithm has a constant learning rate. The present
method assures faster learning than the BP
algorithm and works well even though the initial
weights are relatively large.

mentioned, classical

and

3.3 Learning algorithm via the Recursive
Least Square
A nonlinear neural network problem could be
partitioned into linear and nonlinear portions. This
that if all the node

means inputs *,-1  and
summation outputs Y« were specified, the problem

would be reduced to a linear problem, Le. a system

of linear equations that relate the weight vector W
to the summation outputs and the node inputs.

We first calculate the desired summation output
Yu  of the nonlinear portion, then update and
optimize the weights of the linear part between the

desired summation outputs Y4 and the imputs. The
new algorithm can be summarized by the following
steps.

1) Calculation of the desired summation output. The
estimates of the desired summation outputs 9# of
the hidden layers can be obtained by evaluating the
X

ik,

gradient of £ with respect to the node inputs
The estimate of the desired summation outputs of

the output layer 2 can be calculated from the target
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Fig. 1 Linear and nonlinear portion of the neurons
in the hidden and output layers.
(a) Hidden layer (b) Output layer

output © and the Inverse of activation function

70

dy=f" (O/r) (9
d//c}k =f_l (xjk*), j:2731"'=(L""1) (10}
where

A A AN
W, :[WLI’WLZ’”"WLM]
dL =[dL1:dL2:“':dLM]T

M : the number of output layer node.

2) Tterative learning with RLS algorithm. The
recursive least squares method partitions the layers
of an NN into a linear set of input—output equations
and applies the common RLS algotithm to update
the weights in each layer. The application of the
RLS algorithm for a weight matrix update gives the
following real-time learning algorithms :

K/' =P/ X, (l+xT,—|P,X,_I) (1].)
P/ =(I_KJ’YT"I)PJ//’L (12)
K P

where ©/ 1s the gain matrix, *7 Is covariance
matrix, the forgetting factor A can be used to
improve the charactenstics of the lransient response
as follows :

k)= A Ak =1)+(1-2,) (13)
where A =098 P, (010)=5001
3) Optimal value of the weights.

Wy =W, +K, (d/,A —Yu ) (14)

Wy =w, + K,—(djk* —J/,-/c) (15)

A second method, which 1s an alternative to the
back-propagation  algorithm, by minimizing the
mean-square error between the desired output and
the actual output with respect to the summation

outputs Y. Unfortunately, it has an unstable or
divergent learning algorithm because the estimates

of the summation output ¥# for the nonlinear part
are not accurate enough.

In this paper, we propose to search for the
optimal learning rate parameters. This procedure not
only vields more accurate estimates for the desired
summation outputs of cach neuron, but also saves
the trial and error of adjusting the learning rate
parameters.

3.4 Speed sensorless control strategy
Two independent observers are used to estimate
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the rotor flux vectors: one hased on (1) and the
other based on (2). Since (1) does not involve the

speed @, this observer generates the desired value

of rotor flux, and (2) which does involve @, may
be regarded as a neural model with adjustable
weights. The error between the desired rotor flux

Aar o given by (1) and the rotor flux A'dgr_en

"
Ay

Neural Netwaork Emulator

X[k _*C)\ w\[ 4
(k)
1 O® 1

b _mga-) __________

» s+1/T
N LY
" \\ Back E(k) T+ AL
®, N Propagation <—( -
Algorithm g
(a)
i } Neural Network Emulator
M| \w.uc)
. J’(k)
Al |
8- OS]
Al | _,( )/nn il /2’

(f)r EKF basfed A + 4 dqr o
NN Algerithm

(b)

"
N,

-~ Neural Network E

- *(_ N

Ry - ﬁ ) S

- -|dy

Y ;ka T

Ay
N

. Nevel RLS |
a, baged NN
Algerithm

Fig. 2 Struclure ol NN for @, estimation,

(a) Back-Propagation algorithm
{(b) Exlended KALMAN Filter algorithm
(c) Recursive Least Square algor 1thm

provided by the neural model (2) is used to adjust

the weights, in other words the rotor speed @ .
The rotor speed can be derived using the NN.
The overall hlock diagram of speed sensorless
control is shown in Fig. 2.
The weights between neurons are tuned so as to
minimize the energy function

_l. 1 i
E-—ZE _z(ldq/ \m(k) A’d{]!_Lm(k))‘ (16)

The current model can be represented as a neural
model.

Py _on ()= 27 () a7

where

x(l) = Lo (k) Boa_en(k) i*4el)]
= [XI (k) Xz(k) Xz(k)]

w(k){l—ir\ 61, Lo }
T T

=[‘2’11(k) "blz(k) ‘2’13(/‘)]7‘

T, : sampling time

The new weight, Wi, (k) is therefore given by
Wl"(k-'_‘l) le I.V ('l‘) J (18)

where ¥, (k) =Xdgr vm (1() )

The estimated rotor speed @, (k) applied by RLS
based on NN is computed as follows :

o, (k+1)=0,.(k)+ K, (k)]y, (k)= 3,6/, (19)
4. SIMULATION RESULTS

A 22kW 4-pole IM is used for the simulation
and experiment simultanecusly. The proposed
sensorless control of IM 1s shown in Fig. 3. In
this paper, a synchronous frame current regulator
is used, and reference voltages are calculated
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from the current regulator. The estimated angular
speed is used for the tfransformation between
stationary reference frame and the synchronously
rotating reference frame. In PWM techniques, the
space vector voltage modulator 1s used to obtamn
constant  switching frequency. The nominal
parameters used for the simulations are given
Table 1 as follows :

Speed ControHetT xpand_xn)
Current CantrolfefTemg)

|
|
|
my I
Sensorfess "\1
Drive “1
Algorithm :
! { System : )
, Controtier I '
! Methed-1 ;
I
1
| C - e
i Mothod | =
‘ . | B —*’_‘ Spucchctur
Ll meua] ! \ '(8) voltage
! ! ¢ i Ll ") woauiatar
i T t J—
DSF(TMS.?zchi ! 0
T
P T T __ __m__mm"__m____m____J[{
i } K T, r’ \
N I
'
( IM>
a8 3 A Mo Le|Be EEME
Fig. 3 The block diagram of the overall control

algorithm.

1 REMES7|9 ®MEE
TABLE 1 induction Motor Parameters.

Rated Power 22kW Ls 43.75mH
Rated Speed 2000rpm Lr 44 09mH
Rated Torque 120Nm N Lm“ 42 1mH
Rs 0.115 Jm 0.1618kgm*
Rr 0.0821 P 4

The step response of the speed sensorless
algorithm is shown in Fig. 4 when the speed
reference is changed [rom Olmpml to 5000pml. As
shown in Fig. 4, we can know thal the speed error
of RLS-hased NN algorithm is hmited by 0.05% of
the rating speed. Also, the proposed learning
algorithm usually converges in a few iterations and
the error is comparable to that of the well-known
hack-propagation algorithm.

+10007 —————==~

[rpmi] .

-1000J L . . e -
+30 : : : :

+507 =

INm] r”\ gl

—50-

+1000~

frpm] | —————

—10004
+307

[Al

—304
30

[Nm] rﬂ\ hv i

—50-

“100[ms]/div

41000~

[rprm]

—10004
+301

[A]

400[ms]/div

(c)

I3 4 HSE3 VA £ FH &M H|T
Fig. 4 The characteristics comparison of speed

estimation when applied to ihe load torgue

{0 - +500[rpm], TL=0.5[p.u.1).

(a) [Method-1] BP-based NN algorthm{72,000s)
(b) [Method-2] EKF-based NN algor i thm{40,000s)
(c) [Method-3] RLS-based NN algorihm(2,000s)
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Fig. 5 shows the comparison of the mean squared
error versus the number of iteration for each

method. The proposed leaming algorithm usually
converges in
squared error.

a few iterations at the same mean

C omparison of the MSE vs. the teration Number

7.E-02
6.E-02
5E-02
4E-02
3.E-02
2E-02
1.E.02
DEQ) . : ! !

Mean Squared Eror

Number of Kerations (x8,000)

Hovel RLS-NN

|+BP —s—EKF-HN

=E
Fig.

HoH 224 of H=5el v
Compar 1son of mean-squared error vs. the
number of |ierations for each NN algorithm.

System Sensitivity to Parameter Yariation

7.0E-D2
6.0E-02
5.0E-02
4.0E-02
3.0E-02
2.0E-02
1.0E-02
0.0E+00 : - . L L L

1.1 1.2 13

Speed Variation

14

Rotor Resistan ce Variation

[4—BP —#—EKF-NM  Movel RLS-NN

m2fo|e Haof CiE AlAH olZtE

D EEHE O SMA HE HE

System sensitivity to parameters variation :
speed variation vs. rotor resistance

variation for each NN algor1thm.

Fig. 6 shows the system sensitivity to parameter
variation. Fig. 7 shows the comparison of the mean
squared error versus the noise sensitivity. We find
that this proposed technique of MNN is much less
affected by the mtial weights and the learning
parameters,

Comparisan of the MSE vs. the Noise Sensitivity
SED2
[ Y e ' &
§ 4E42 /
= 3E02 .
T //m 7 i &
5
£ 2602
2 te02
L)
[+
E O_Eq.oa 1 i 1 ] 1 ]
0 10 20 30 40
Noise Deviation (% )
|+BP —#—EKF-HN Novel RLS NN ‘
3 7 "HoadzEex of -o|l= olZEel Hly
Fig. 7 Comparison of mean—squared error vs. the noise

deviation for each NN algorithm.

5. EXPERIMENTAL RESULTS

For the high performance IM drives, the overall
IM drive system in Fig. 8 is implemented with a
TMS320C31 DSP control board and a PWM IGBT
inverter.

For actual load emulation, the DC generator is
coupled to the IM. Actual rotor angle and machine
speed are measured from an incremental encoder
with  4096[ppr]
sampling time of current controller loop is 250[us]
and that of the outer voltage regulating loop and

resolution for monitoring. The

speed loop 1s 25[msl. The control algorithm
including  the proposed scheme was  fully
implemented with the software, :
IGBT irverter
_..”h; _qkj] _.K‘—l m
Eh—‘ ™ ?—I o 7 bc
— iJ—’ 7, — oy Generalor
) Il
HFA’J‘ Hk.’_f l*ik’_f
"""'_:v_, Ala glle o e =] |® i?;:jw
( Gate Driver Circait ]«- Osciffoscape
"(' /0 Contral N (mir L_ﬂ E
7] [afsfaa)
. Gating Generator :
ROM : 32k X J2Bit ] DAC“J

a8 8 A REXMSY| TE AlAH

Fig. 8 The overall IM drive system.
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Experiments are conducted to evaluate the

E AR AR performance of the new speed sensor elimination
& _ ' algorithm based on the NN. The slep response of
% 7 1 ~ - the speed sensorless algorithm is shown in Fig. 9
5 T when the speed reference is changed with load
. torque. It shows that the estimated speed 1is
gj s £ tracking the real one with good accuracy.
E ﬂ_ = n\/— L 13>|<R,
g 500 [ o
0.5[sydiv ™ (\
3 & T0.8% R,
(a) E ) , 5
£ O RT “
: — Sam—
T [T T, OS[sVdv
3 (a)
3 | I I
=z I oo 2R "
~ l /‘ i i} T
z . L Aoser
T It o 7 g R, / :
= - . = L I .
@ & 0 R 1 @,
- o - = ]
0.5[=ydiv -
(b) _l -
% - : \‘/_ I - 0.5[s])/div
g (b)
T L bl B s, i:z;JR;; 1
5 500 P ot T -
g | i [
| /[ (0.8 R,
£ 5 R,
= Ta B » N
o E 4] v ,.0 RN @,
£ T
O.S[SIId-iv
( ) 0 5]s|/div
¢
(c)
a8 9 S5iE3 V] R SE 54 5 I8 10 3FA MEge HEo WE S8 54
Fig. 9 The experimental waveforms of characteristics Fig. 10 The experimenial waveforms of speed response
compar ison of speed response when applied to the characteristics according to lhe rotor
load torque(0 ~ +500[rpm], TL=1{p.u.]). resistance var ration(0 ~ +500[rpm], TL=0).
(a) [Method-1] BP-based NN algor 1 thm(72,0008) (a) [Method-1] BP-based NN algor i thm(72,000s)
(b} [Method-2] EKF-based NN algor 1 thm(40,000s) (b) [Method~2] EKF-based NN algorithm(40,000s)

(c) [Method-3] RLS-based NN algoriihm(2,000s) (¢) [Method-3] RLS-based NN algor i lhm(2,000s)
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Fig. 10 shows the characleristics of speed
response with rotor resistance variation, As shown
in those figure, the proposed algorithm works well
in spite of the load torque varation and parameter

variation.
6.

4 8

We have sludied leamning algorithm  for
multi-layered [eed—forward type neural networks.
Neural Network algorithm can be divided into three

categories for specd sensorless control of induction
motor drives.

1) Back Propagation-based NN algorithm
2) Extended Kalman Filter-based NN algorithm
3) Recursive Least Square-based NN algorithm

Comparisons of the three algorithms are made
through a identification
number of iterations required to converge and the

syslem problem. The
mean-squared error between the desired and actual
outputs is cornpared with respect to each method.

In this paper, a new approach for the on-line
learming process of multi-layer neural network using
the least type algorthm
proposed. This method minimizes the global sum of
the squared errors between the actual and the
desired output values iteratively. This new technique

recursive squares is

is less sensitive to the initial weights and to the
learning parameters.

The theoretical analysis and experimental results
are discussed. The convergence of both the BP and
EKF-based NN algorithms depend heavily on the
of the initial weights. If
incorrectly, both algorithms will take a long time to
converge and may even diverge. The RLS-based
NN algorithm is less affected by the initial weights

magnitude chosen

and the learming paramcters.

11

[2]
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