• Title/Summary/Keyword: 학습속도

Search Result 1,109, Processing Time 0.03 seconds

Introduction and Utilization of Time Series Data Integration Framework with Different Characteristics (서로 다른 특성의 시계열 데이터 통합 프레임워크 제안 및 활용)

  • Jisoo, Hwanga;Jaewon, Moon
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.872-884
    • /
    • 2022
  • With the development of the IoT industry, different types of time series data are being generated in various industries, and it is evolving into research that reproduces and utilizes it through re-integration. In addition, due to data processing speed and issues of the utilization system in the actual industry, there is a growing tendency to compress the size of data when using time series data and integrate it. However, since the guidelines for integrating time series data are not clear and each characteristic such as data description time interval and time section is different, it is difficult to use it after batch integration. In this paper, two integration methods are proposed based on the integration criteria setting method and the problems that arise during integration of time series data. Based on this, integration framework of a heterogeneous time series data was constructed that is considered the characteristics of time series data, and it was confirmed that different heterogeneous time series data compressed can be used for integration and various machine learning.

Enhancing the performance of code-clone detection tools using code2vec (code2vec을 이용한 유사도 감정 도구의 성능 개선)

  • Um, Taeho;Hong, Sung Moon;Yang, Joon Hyuk;Jang, Hyo Seok;Doh, Kyung-Goo
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.1
    • /
    • pp.31-40
    • /
    • 2021
  • Plagiarism refers to the act of using the original data as if it were one's own without revealing the source. The plagiarism of source code causes a variety of problems, including legal disputes. Plagiarism in software projects is usually determined by measuring similarity by comparing every pair of source code within two projects. However, blindly comparing every pair has been a huge computational burden, causing a major factor of not using tools of better accuracy. If we can only compare pairs that are probable to be clones, eliminating pairs that are impossible to be clones, we can concentrate more on improving the accuracy of detection. In this paper, we propose a method of selecting highly probable candidates of clone pairs by pre-classifying suspected source-codes using a machine-learning model called code2vec.

A Study on the Response Characteristics of 200MW Gas Turbine Governor System (200MW급 가스터빈 조속기 응답특성에 대한 연구)

  • Han, Young-Bok;Nam, Kang-Hyun;Kim, Sung-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.625-632
    • /
    • 2022
  • Gas turbine generators in load-following operation in the domestic power system play a major role in maintaining the rated frequency, but often have poor frequency control. Therefore, after examining the control characteristics of the governor, which is a gas turbine speed control device, and analyzing the failure types, countermeasures were suggested for each case. In addition, it was confirmed through the governor response test that the gas turbine helps in frequency recovery depending on the speed of fuel control, but also acts as a factor impeding stable operation, such as rapid fluctuations in combustion chamber temperature and combustion vibration. Therefore, in order to maintain stable power quality, there was a need for thorough facility management as well as research on the governor control method in which the traditional PID control method and the machine learning algorithm, a core field of the 4th industry, were fused.

Classification Method based on Graph Neural Network Model for Diagnosing IoT Device Fault (사물인터넷 기기 고장 진단을 위한 그래프 신경망 모델 기반 분류 방법)

  • Kim, Jin-Young;Seon, Joonho;Yoon, Sung-Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.9-14
    • /
    • 2022
  • In the IoT(internet of things) where various devices can be connected, failure of essential devices may lead to a lot of economic and life losses. For reducing the losses, fault diagnosis techniques have been considered an essential part of IoT. In this paper, the method based on a graph neural network is proposed for determining fault and classifying types by extracting features from vibration data of systems. For training of the deep learning model, fault dataset are used as input data obtained from the CWRU(case western reserve university). To validate the classification performance of the proposed model, a conventional CNN(convolutional neural networks)-based fault classification model is compared with the proposed model. From the simulation results, it was confirmed that the classification performance of the proposed model outweighed the conventional model by up to 5% in the unevenly distributed data. The classification runtime can be improved by lightweight the proposed model in future works.

Impact Assessment of an Autonomous Demand Responsive Bus in a Microscopic Traffic Simulation (미시적 교통 시뮬레이션을 활용한 실시간 수요대응형 자율주행 버스 영향 평가)

  • Sang ung Park;Joo young Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.70-86
    • /
    • 2022
  • An autonomous demand-responsive bus with mobility-on-demand service is an innovative transport compensating for the disadvantages of an autonomous bus and a demand-responsive bus with mobility-on-demand service. However, less attention has been paid to the quantitative impact assessment of the autonomous demand-responsive bus due to the technological complexity of the autonomous demand-responsive bus. This study simulates autonomous demand-responsive bus trips by reinforcement learning on a microscopic traffic simulation to quantify the impact of the autonomous demand-responsive bus. The Chungju campus of the Korea National University of Transportation is selected as a testbed. Simulation results show that the introduction of the autonomous demand-responsive bus can reduce the wait time of passengers, average control delay, and increase the traffic speed compared to the results with fixed route bus service. This study contributes to the quantitative evaluation of the autonomous demand-responsive bus.

FRM: Foundation-policy Recommendation Model to Improve the Performance of NAND Flash Memory

  • Won Ho Lee;Jun-Hyeong Choi;Jong Wook Kwak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.1-10
    • /
    • 2023
  • Recently, NAND flash memories have replaced magnetic disks due to non-volatility, high capacity and high resistance, in various computer systems but it has disadvantages which are the limited lifespan and imbalanced operation latency. Therefore, many page replacement policies have been studied to overcome the disadvantages of NAND flash memories. Although it is clear that these policies reflect execution characteristics of various environments and applications, researches on the foundation-policy decision for disk buffer management are insufficient. Thus, in this paper, we propose a foundation-policy recommendation model, called FRM for effectively utilizing NAND flash memories. FRM proposes a suitable page replacement policy by classifying and analyzing characteristics of workloads through machine learning. As an implementation case, we introduce FRM with a disk buffer management policy and in experiment results, prediction accuracy and weighted average of FRM shows 92.85% and 88.97%, by training dataset and validation dataset for foundation disk buffer management policy, respectively.

The Necessity of Mandatory Music Education for Multi-cultural Families (다문화 가정을 위한 의무 음악교육의 필요성)

  • Yoo, Hyun-Ju
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.7
    • /
    • pp.229-235
    • /
    • 2019
  • Currently, Korean society has seen a rapid increase in international marriages since the mid-1990s, and the number of their children entering school age has been increasing every year in recent years. With the growing number of students with parents from various social and cultural backgrounds in our society, the difficulties they face are emerging as a new social problem that we should pay attention to and solve. Although the difficulties they are experiencing vary depending on their parents' nationality, social, economic status, and attitude toward raising their children, it is generally reported that they are suffering from language barriers in elementary school, study barriers in high school, and friendship barriers in middle school. In particular, the school started this research based on the problem that when students from multi cultural families did not mix well with ordinary students and could not narrow the distance between them, they could become adults and enter society in the future, causing social conflict.

A Study on Vehicle Number Recognition Technology in the Side Using Slope Correction Algorithm (기울기 보정 알고리즘을 이용한 측면에서의 차량 번호 인식 기술 연구)

  • Lee, Jaebeom;Jang, Jongwook;Jang, Sungjin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.465-468
    • /
    • 2022
  • The incidence of traffic accidents is increasing every year, and Korea is among the top OECD countries. In order to improve this, various road traffic laws are being implemented, and various traffic control methods using equipment such as unmanned speed cameras and traffic control cameras are being applied. However, as drivers avoid crackdowns by detecting the location of traffic control cameras in advance through navigation, a mobile crackdown system that can be cracked down is needed, and research is needed to increase the recognition rate of vehicle license plates on the side of the road for accurate crackdown. This paper proposes a method to improve the vehicle number recognition rate on the road side by applying a gradient correction algorithm using image processing. In addition, custom data learning was conducted using a CNN-based YOLO algorithm to improve character recognition accuracy. It is expected that the algorithm can be used for mobile traffic control cameras without restrictions on the installation location.

  • PDF

Implementation of an alarm system with AI image processing to detect whether a helmet is worn or not and a fall accident (헬멧 착용 여부 및 쓰러짐 사고 감지를 위한 AI 영상처리와 알람 시스템의 구현)

  • Yong-Hwa Jo;Hyuek-Jae Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.150-159
    • /
    • 2022
  • This paper presents an implementation of detecting whether a helmet is worn and there is a fall accident through individual image analysis in real-time from extracting the image objects of several workers active in the industrial field. In order to detect image objects of workers, YOLO, a deep learning-based computer vision model, was used, and for whether a helmet is worn or not, the extracted images with 5,000 different helmet learning data images were applied. For whether a fall accident occurred, the position of the head was checked using the Pose real-time body tracking algorithm of Mediapipe, and the movement speed was calculated to determine whether the person fell. In addition, to give reliability to the result of a falling accident, a method to infer the posture of an object by obtaining the size of YOLO's bounding box was proposed and implemented. Finally, Telegram API Bot and Firebase DB server were implemented for notification service to administrators.

Scenario-based Future Infantry Brigade Information Distribution Capability Analysis (시나리오 기반의 미래 보병여단 정보유통능력 분석 연구)

  • Junseob Kim;Sangjun Park;Yiju You;Yongchul Kim
    • Convergence Security Journal
    • /
    • v.23 no.1
    • /
    • pp.139-145
    • /
    • 2023
  • The ROK Army is promoting cutting-edge, future-oriented military development such as a mobile, intelligent, and hyper-connected Army TIGER system. The future infantry brigade plans to increase mobility with squad-level tactical vehicles to enable combat in multi-domain operations and to deploy various weapon systems such as surveillance and reconnaissance drones. In addition, it will be developed into an intelligent unit that transmits and receives data collected through the weapon system through a hyper-connected network. Accordingly, the future infantry brigade will transmit and receive more data. However, the Army's tactical information communication system has limitations in operating as a tactical communication system for future units, such as low transmission speed and bandwidth and restrictions on communication support. Therefore, in this paper, the information distribution capability of the future infantry brigade is presented through the offensive operation scenario and M&S.