• Title/Summary/Keyword: 학생 사고

Search Result 1,567, Processing Time 0.025 seconds

An Analysis of Teacher-Student Communication and Students' Mathematical Thinking in Sixth Grade Mathematics Classrooms (초등학교 6학년 수업에서의 수학적 의사소통과 학생의 수학적 사고 분석)

  • Hong, Woo-Ju;Pang, Jeong-Suk
    • Journal of the Korean School Mathematics Society
    • /
    • v.11 no.2
    • /
    • pp.201-219
    • /
    • 2008
  • The purpose of this study was to provide useful information for teachers by analyzing various levels of teacher-student communication in elementary mathematics classes and students' mathematical thinking. This study explored mathematical communication of 3 classrooms with regard to questioning, explaining, and the source of mathematical ideas. This study then probed the characteristics of students' mathematical thinking in different standards of communication. The results showed that the higher levels of teacher-student mathematical communication were found with increased frequency of students' mathematical thinking and type. The classroom that had a higher level of Leacher-student mathematical communication was exhibited a higher level of students' mathematical thinking. This highlights the importance of mathematical communication in mathematics c1asses and the necessity of further developing skills of mathematical communication.

  • PDF

Exploring Scientific Argumentation from Teacher-Student Interaction with Epistemological and Psychological Perspectives (교사-학생 상호작용간의 과학논증 탐색: 인식론 및 심리학적 관점으로)

  • Park, Young-Shin
    • Journal of the Korean earth science society
    • /
    • v.31 no.1
    • /
    • pp.106-117
    • /
    • 2010
  • The purpose of this study was to explore students' argumentation in perspectives of epistemology and psychology and to find out how teacher can promote students' abilities of developing argumentation. The 60 hours of lessons from the interaction between one science teacher (Mr. Physics, who had 35 years of teaching experience) and his 26 students were observed, transcribed, and analyzed using two different analyzing tools; one is from the perspective of epistemology and the other from the perspective of psychology, which can portray how argumentation is constructed. Mr. Physics created the environment where students could promote the quality of scientific argumentation through explicit teaching strategy, Claim-Evidence Approach. The low level of argumentation was portrayed through examples from students' prior knowledge or experience in the form of an Appeal to the instance operation and the Elaboration reasoning skill. Students' own claims were developed through application of knowledge in a different context in the form of an Induction operation and Generativity reasoning skill. Higher level of argumentation was portrayed through Consistency operation with other knowledge or experience and Explanation reasoning skills based on students' ideas with more active teacher's inputs. The teacher in this study played a role as a helper for students to enact identities as competent "sense makers," as an elaborator rather than evaluator to extend students' ideas, and as a mentor to foster and monitor the students' development of ideas of a higher quality. It is critical for teachers to understand the nature of argumentation, which in turn is connected to their explicit teaching strategy with the aim of providing opportunities where students can understand the science enterprise.

Analysis and Effects of High School Students' Systems Thinking Using Iceberg(IB) Model (Iceberg(IB) 모델을 적용한 고등학생의 시스템 사고 분석 및 효과)

  • Lee, Hyundong;Lee, Hyonyong
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.4
    • /
    • pp.611-624
    • /
    • 2017
  • The purposes of this study are to explore Iceberg(IB) model as a systems thinking analysis tool for high school students, suggest a systems thinking analysis method using rubrics and verify its validity and reliability. For this study, the theoretical basis was examined through literature analysis about IB model and rubrics of evaluating the systems thinking. And 6 high school students participated in IB model activity and were interviewed about polar climate change. In addition, quantitative tests using systems thinking scale were also conducted to support the results of the IB model activity analysis. Data obtained from IB model activity was analyzed by using the rubrics of evaluating system thinking developed by Hung (2008). The analysis results were reviewed by two professors to confirm the validity and reliability. In order to confirm the validity, correlation analysis were performed between the rubrics and the quantitative test results. Finding are as follows: Six students used the IB model to express their systems thinking in detail and the results of the systems thinking analysis of students using rubrics showed a distribution of 17~35 points. Furthermore, the results of correlation analysis between rubrics and systems thinking scale was highly correlated (Pearson product-moment is .856) on significance level from .05. Using the IB model introduced in this study, students express their systems thinking effectively and the results of the systems thinking analysis using IB model is considered to analyze validity and reliability. Based on the results of this study, implication suggests how to study the systems thinking in science education.

Analysis of Epistemic Thinking in Middle School Students in an Argument-Based Inquiry(ABI) Science Class (논의기반 탐구(ABI) 과학수업에서 나타나는 중학생들의 인식론적 사고 분석)

  • Park, Jiyeon;Nam, Jeonghee
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.3
    • /
    • pp.337-348
    • /
    • 2019
  • The purpose of this study is to examine epistemic thinking in middle school students in an argument-based inquiry science class. Participants of the study were 93 9th grade students from four classes of a middle school in a metropolitan city. Observations were made over one semester during which argument-based inquiry lessons on five subjects were conducted. Data was collected from argument-based inquiry activity worksheets and student questionnaires. After analysis of epistemic thinking in the written reflections, students were found to have the highest frequency of epistemic metacognitive skills, followed by epistemic cognition, epistemic metacognitive experience, and epistemic metacognitive knowledge. While investigating the effects of an argument-based inquiry science class on student epistemic thinking and after analysis of the reflections written for the first ABI activity and the fifth ABI activity, we found that all of the sub-elements of epistemic thinking have increased. The rate of growth for epistemic cognition is greatest, followed by epistemic metacognitive knowledge and epistemic metacognitive skills. Assessed for epistemic thinking, the level of epistemic thinking improved over the course of the argument-based inquiry science class. The results of the survey show that students actively participating and being recognized for their active participation in the argument-based inquiry science class are helpful in understanding scientific knowledge. Therefore, an argument-based inquiry science class is a teaching and learning program that allows students to understand and experience the epistemic nature of scientific knowledge and its construction through collaboration and agreement.

전제의 해석 유형이 아동의 수학적 추론 결과에 미치는 영향 분석

  • Jeon, Pyeong-Guk;Jeong, Jae-Suk
    • Communications of Mathematical Education
    • /
    • v.13 no.1
    • /
    • pp.161-167
    • /
    • 2002
  • 본 연구의 목적은 초등학생들이 자신의 전제 해석 유형에 따라 일정한 추론 결과를 내는가를 알아봄으로서, 초등학생들이 일정한 법칙에 따라 사고하는가를 알아보고자 하는데 있다. 지필 검사와 면담을 통해 24명의 대상아동 중 20명(83%)이 자신의 전제 해석 유형에 따라 일정한 추론 결과를 내고 있음을 알 수 있었다. 이를 통해 초등학생의 추론 과정은 일정한 법칙을 따르고 있다는 것을 알 수 있었다. 산발적이라고 생각되는 초등학생의 답일지라도 면밀히 관찰해 보면 그들 나름의 일정한 법칙에 의해 산출한 답이었다. 이러한 사실은 사고의 결과 뿐 아니라 사고의 과정에 대한 깊은 관심이 필요하다는 것을 시사한다.

  • PDF

An Analysis on Third Graders' Multiplicative Thinking and Proportional Reasoning Ability (초등학교 3학년 학생들의 곱셈적 사고에 따른 비례 추론 능력 분석)

  • Kim, Jeong Won;Pang, Jeong Suk
    • Journal of Educational Research in Mathematics
    • /
    • v.23 no.1
    • /
    • pp.1-16
    • /
    • 2013
  • The primary purpose of this study is to survey multiplicative thinking levels and its characteristics of third graders in elementary school and to analyze how to use it when they solve the proportional problems. As results, the transition thinking ranked the highest among the four kinds of thinking levels when the $3^{rd}$ graders solved the multiplication problems. It means that the largest numbers of students still can not distinguish the additive and multiplicative situations completely and remain in the transition thinking, which thinks both additively and multiplicatively. In addition, the performance of solving proportional problems was distinguished from the levels of thinking. Through this study, we can give some implications of the importance of multiplicative thinking and instructional methods related to multiplication.

  • PDF

A statistical study of mathematical thinkings and problem-solving abilities for logical-type problems with reference to secondary talented students (중등영재학생들의 수학적 사고 선호도와 논리형 문제의 해결능력에 관한 통계적 검증 연구)

  • Pak, Hong-Kyung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.4
    • /
    • pp.198-204
    • /
    • 2009
  • It is one of important and interesting topics in mathematics education to study the process of the logical thinking and the intuitive thinking in mathematical problem-solving abilities from the viewpoint of mathematical thinking. The main purpose of the present paper is to investigate on this problem with reference to secondary talented students (students aged 16~17 years). In particular, we focus on the relationship between the preference of mathematical thinking and their problem-solving abilities for logical-type problems by applying logistic regression analysis.

A Framework for Assessing Probability Knowledge and Skills for Middle School Students: A Case of U.S. (중학교 학생들의 확률적 사고 수준 평가 기준 개발 : 미국의 사례)

  • Park, Ji-Yoon;Lee, Kyung-Hwa
    • School Mathematics
    • /
    • v.11 no.1
    • /
    • pp.1-15
    • /
    • 2009
  • Some researchers (Jones et al., 1997; Tarr & Jones, 1997; Tarr & Lannin, 2005) have worked on students' probabilistic thinking framework. These studies contributed to an understanding of students' thinking in probability by depicting levels. However, understanding middle school students' probabilistic thinking is limited to the concepts in conditional probability and independence. In this study, the framework to understand middle school students' thinking in probability is integrated on the works of Jones et al. (1997), Polaki (2005) and Tarr and Jones (1997). As in their works, depicting levels of probabilistic thinking is focused on the concepts and skills for students in middle school. The concepts and skills considered as being necessary for middle school students were integrated from NCTM documents and NAEP frameworks.

  • PDF

A Comparison of Mathematically Talented Students and Non-Talented Students' Level of Statistical Thinking: The Noticing of Statistical Variability (수학영재학급 학생들과 일반학급 학생들의 통계적 변이성 인식 수준 비교 연구)

  • Ko, Eun-Sung
    • Journal of Gifted/Talented Education
    • /
    • v.23 no.3
    • /
    • pp.387-406
    • /
    • 2013
  • This study compared levels of mathematically talented students' statistical thinking with those of non-talented students in the noticing of statistical variability. t tests were conducted to test for statistically significant differences between mathematically gifted students and non-gifted students. Results for the t-test shows that there is no difference between the TE students' and NE students' noticing of variability in the measurement settings. Meanwhile, the t-test results also show that there is a difference between the TM students' and NM students' noticing of variability in the both measurement and chance settings. Table of frequencies of each level, however, shows that levels of mathematically gifted students' thinking were not distributed at the high levels but were overlapped with those of non-gifted students. These results are thought-provoking results in statistics instruction for mathematically talented students.

The Effects of the Six Thinking Hats Program on Environmentally Friendly Attitude and Environmental literacy in Elementary Science (육색사고모자기법을 적용한 토의활동 프로그램이 초등학생의 환경 친화적 태도 및 환경소양에 미치는 효과)

  • Choi, SunHee;Choi, SunYoung
    • Journal of Science Education
    • /
    • v.38 no.1
    • /
    • pp.144-159
    • /
    • 2014
  • The purpose of this study was to investigate the effects of the elementary students' environmentally friendly attitude and environment literacy through Edward de Bono's Six Thinking Hats in science class. The objects of this study were the sixth grade of both an experimental class (25 students) and a comparative class (24 students) a the S elementary school science class located in Incheon city. The results of this study were as follows: First, the change of environmentally friendly attitude in the experimental group applying the six thinking hats program have statistically meaningful differences (p<.05). Second, the environmental literacy of the experimental group was improved somewhat, but it has no meaningful differences compared the other group statistically. Therefore, the six thinking hats program applied in this study might be useful to improve the students' environmentally friendly attitude in elementary school science class.

  • PDF