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A Framework for Assessing Probability Knowledge
and Skills for Middle School Students: A Case of U.S.

Park, }i Yoon" - Lee, Kyung Hwa™

Some researchers (Jones et al,, 1997; Tarr & Jones, 1997; Tarr & Lannin, 2005) have
worked on students’ probabilistic thinking framework. These studies contributed to an
understanding  of students’ thinking in probability by depicting However,
understanding middle school students’ probabilistic thinking is limited to the concepts in
conditional probability and independence. In this study, the framework to understand
middle schoot students’ thinking in probability is integrated on the works of Jones et al.
(1997), Polaki (2005) and Tarr and Jones (1997). As in their works, depicting levels of
probabilistic thinking is focused on the concepts and skills for students in middle school.
The concepts and skills considered as being necessary for middle school students were

levels.

integrated from NCTM documents and NAEP frameworks.

|. Introduction

The need for coping with quantitative data led
the school curriculum towards emphasizing the
statistics and probability (National Council of
Teachers of Mathematics [NCTM], 1989, 2000).
The Curriculum and Evaluation Standards for
School Mathematics [Standards] put statistics and
probability as a main content strand which
students should learn at every grade level K-12
(NCTM, 1989). Probability as a main content in
the mathematics curriculum at all grade levels
results from the need to prepare for out rapidly
changing society where probabilistic thinking is
necessary.

As uncertainty is increasing within the change
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of society, probabilistic thinking plays an
important role, in that probability is a tool for

quantifying uncertainty in decision-making (Amir
& Williams, 1999). Uncertainty and the need to
quantify it pervades our daily life in business,
or markets. In

weather forecasting, medicine,

recent years mathematics curricula around the
world has been recognizing the importance of
addition to the
documents of NCTM in 1989 and 2000, Chance

and Data

chance and probability. In

is one of five mathematics content

areas in the National Statement on Mathematics

for Australian Schools (Austrailian Education
Council, 1991). The National Curriculum:
Mathematics (DfEE, 1999) of England also

includes Probability in four attainment areas (as

cited in Pratt, 2005).



Studies on mathematics education also reflect
the importance of learning probability. Gal (2004:
39) suggested two reasons for learning
probability: (a) probability is part of mathematics
and statistics, fields of knowledge that are
important to leamn in their own right, as part of
modern education; and (b) the learning of
probability is essential to help prepare students
for life, since random events and chance
phenomena permeate our lives and environments.
The emphasis of probabilistic thinking in school
mathematics is based on the second reason as an
external consideration.

However, recent studies on  students’
probabilistic thinking report that students do not
fully understand the concepts of chance and
probability (Polaki, 2005; Tarr, 2002; Watson &
Kelly, 2005). Most of instruction in probability
deals with the formulae to get the measure of
probability without building deep an understanding
of the Indeed, the

instruction in many mathematics classrooms does

probabilistic  concepts.

not provide students with the appropriate
experience of probabilistic thinking. To understand
chance

the essence of random events and

phenomena in our lives, improving students’
probabilistic reasoning with interpretation of the
various concepts and skills should be the focus
when teaching probability

When it comes to the probability, however,
there is little research on the perspective of
teaching and learning. Given that our rapidly
changing society requires people to understand
and deal with uncertain situations, research about
probabilistic thinking is needed to help educators

have a clear view on teaching fundamental ideas

in probability. This study aims to develop a way
to understand and characterize middle school
students’ probabilistic thinking. This work will be
primarily based on the previous research on
assessment of students’ probabilistic thinking by
Jones et al. (1997), Polaki (2005), and Tarr &
Jones (1997). We will reconsider this framework
in terms of the concepts considered as being
necessary for middle school students, and criteria
to classify the levels. Based on this
reconsideration on the existing framework, we
will present a developed framework which can
provide more clear explanation for middle school

students’ probabilistic thinking.

[1. Studies on Probabilistic
Concepts and Understanding
Students” Probabilistic
Thinking

1. Uncertainty and random events

There is inconsistency with the age at which
children are capable of understanding uncertainty in
literature. Piaget and Inhelder (1975) asserted that
the ability to differentiate between certainty and
uncertainty did not appear until around 7 years of
age. On the other hand, there are many evidences
indicating that young children can recognize the
concepts of uncertainty in the sense of
differentiating random situations from determinacy
(Bymes & Beilin, 1991; Horvath & Lehrer, 1998).

For this conflicting ages suggested in the

research literature, Metz (1998: 158) argued that



there are “different criteria corresponding with

different

conceptualizations”  to  understand

students’ understanding on uncertainty. For
example, at the age around 4 or 5, children have
“a relatively rudimentary form” of “the distinction
between phenomena with certain and predictable
outcomes versus phenomena with uncertain and
unpredictable outcomes”. Also, from a study by
Kuzmak and Gelman (1986), Metz (1998: 158)
suggested that

children at age 5 can give

“appropriate  explanations” of why a certain
outcome is unpredictable.

Although there are many levels of complexity
involving the notion of uncertainty, there seems

to be a consistency that children at age 5 grasp

the idea of uncertainty “in the sense of being
able to consider what situations produce
deterministic ~ versus  nondeterministic  results”

(Metz, 1998: 160).

An explicit definition of randomness does not
exist in literature although uncertainty has been
considered for a long history. A spectrum of the
perspective for randomness, which was analyzed
by Liu and Thompson (2002: 1), shows the
change in views for uncertainty over the ages. In
the age of the European Enlightment, probability
was regarded as reflecting “human ignorance of a
true determinist course of events”. In a perspective
of deterministic perspective, "absolute randomness
does not exist”, and therefore, "all probabilities
will be 0 or 1” (Liu & Thompson, 2002: 1).
literature conducted Liu and

A review of

Thompson shows that the other end of the
spectrum in randomness perspective came from
“the renunciation of determinism” followed by the

development of science in the twentieth century.

In particular, von Mises (1928/1952) considered
a sequence "to be random if we are convinced of
the impossibility of finding a method that lets us
win in a game of chance where winning depends
on forecasting that cited in

Batanero et al., 2005: 26).

sequence”  (as

The definition of randomness has been

through random
(Liu &

Moore and McCabe

attempted meanings  of

phenomena and random
2002).

(2000) defined

sampling
Thompson, Yates,
‘random phenomena’ as ones
“uncertain but there is a regular distribution of
outcomes in a large number of repetitions”.
Bluman (2001) defined random sampling that "all
possible samples of a certain size “must have an
equal chance of being selected from the
population”” (as cited in Liu & Thompson, 2002:
1). These definitions are in the same line, in that
both are considering a kind of regularity by a
large number of repeated trials. Indeed, it is
noted that “perfect randomness” can be regarded
only in infinite outcomes, and therefore,
randomness is a theoretical concept (Batanero et

al., 2005: 26).

2. Independence and conditional event

The idea of independence of an event is
intuitive. For example, “a die or a coin does not
More

have a memory of preceding throws”.

explicitly, intuitive idea was considered as
independent “if there was no reason to think that
one of them could influence the other (Batanero
et al., 2005: 28).

However, according to Batanero et al. (2005)

with an axiomatic theory of Kolmogorov, intuitive



idea of independence was emptied. The

probabilistic expression of independence by the

multiplication rule, P(AMB)=P(A*KB) is
stochastically independent, but not intuitively
independent.

In previous heuristic research of his paper,
Konold et al. (1993) showed that difficulty of
understanding independence of events is related
with heuristics. A problem, which of the
following sequences was most likely and which
was least likely to occur when tossing a coin
five times: (a) HHHTT, (b) THHTH, (c) THTTT,
(d) HTHTH and (e) all four sequences are

equally likely, was presented to high school

students and  undergraduate students  of
remedial-level in mathematics course. Overall 72
% students correctly chose the answer (e) for the
most likely problem. This result suggests that
students understand that trials of successive
tossing are independent resulting in all sequences
of tossing a coin being equally likely.

The study mentioned above about understanding
independence of successive events show that
students have an intuitive idea of independence,
but it doesn’t necessarily mean that they can
justify correctly the idea come from intuition.

Some studies showed that middle school
students experience a transition when they have
to understand the concept of compound event as
a combining event of simple events. In a study
by Watson, Collis, and Moritz (1997) involving a
probability comparison between two events of
rolling a die such as, “which is more likely, a 1
or a 6, or are they equally likely?”, just a few
students gave adequate justification for their right
students do not  have

answer indicating  that

correct understanding on the concept of compound
event.

Polaki (2005) denoted that the understanding
compound events requires to be able to (a)
generate complete sets of outcomes for each
experiments, and (b) use sample space symmetry,
composition or experimentation as a basis for
making probability predictions. In his study with
elementary and middle school students, he found
that students use the strategies for listing sets of
outcomes for simple and compound events: (a)
incomplete lists based on

arbitrary lists and

subjective  reasoning for simple events, (b)

trial-and-error  strategies, (c) partially-generative
strategies for compound events, and (d) generative
strategies for compound events, as the degree of
sophistication.
According to  Shaughnessy and Bergman
(1993), students encounter extreme difficulty when
learning the concept of independence and the
laws of conditional probability. Theoretically, the
conditional

relation of independence and the

probability is drawn by Bayesian Rule, ‘if event

A and event B are independent,
P(ANB)=P(A)P(B). And the conditional
probability of event A given event B is

P(A | By=P(ANB)/P(B). So, if two events A
and B are independent, P(A | B)= P(A).
However, as Tomlinson and Quinn (1997: 4-6)
pointed out, this formula may be useful, but “it
clearly does not provide the student with an
intuition of the reasoning process necessary to

solve such embedded problems”. He also noted

that the counter-intuitive laws of probability
composed: of abstract terms -and complex
equations should be taught with focus on



“challenging the personal biases and cognitive
heuristics identified by psychologists”.

In a study of Watson and Moritz (2002: 82),
students tended to reason more correctly in an item
with frequency type than probability type. For a
question, “"which one has larger frequent between
(a) people who are left-handed out of 100 men,
and (b) people who are men out of 100
left-handed”, success rate was relatively higher than
a question with probability type. For this difference
between frequency item and probability item
involving conditional event, Watson and Moritz
(2002) suggested that students experience transfer
their probabilistic understanding “from countable
situations to social settings in estimation, reasoning,
and appropriate intuition”. In this process of
transfer, questions involving social contexts ask
students to use their contextual knowledge of the
environment as well as the numbers provided. To
help students be faniliar with the conditional event
within social context, Watson and Moritz (2002)
suggested the educational

programs to include

exposure to social context.

3. Students’ Probabilistic Thinking

The attempts to characterize and assess
students’probabilistic thinking have been conducted
by some researchers (Tarr & Jones, 1997; Jones
et al,, 1997; Polaki, 2005; Tarr & Lannin, 2005).
The researchers presented the frameworks which

contribute  to

capturing the multi-facets of

students’ thinking in probability. The frameworks
have been studied for different probability
constructs, and validated for students at different

grade levels. The idea within the frameworks

provided us with a coherent view of students’
understanding on various probability concepts.

A framework of Jones et al. (1997) describes
young children’s probabilistic thinking across four
levels for each of the four constructs: sample
space, probability of an event, probability
comparisons, and conditional probability. The four
key constructs were formulated adding the fourth
construct to the former three key constructs which
have been investigated by several researchers. The
levels of thinking within specific knowledge
domains are in concert with cognitive development
research (as cited in Jones et al., 1997)

This work includes Piaget and Inhelder (1975),
and “neo-Piagetian theories that postulate the
existence of sub stages or levels that recycle
during developmental stages” (as cited in Jones et
al,, 1997: 102). According to Biggs and Collis
(1991), the levels reflect shifts in the structural
complexity of student’s thinking, and each level
subsumes the preceding one. Further, they
maintain that “this learning cycle is consistent
across stages and is applicable to school-based

tasks” (as cited in Jones et al., 1997: 104).

. Analysis of the
documents of mathematics
curriculum and a nationalized
assessment

1. ‘Standards(NCTM, 1989)’ and ‘Principles
and Standards(NCTM, 2000)’
curriculum in

Comparing to the previous



mathematics, the NCTM (1989) increased
attention to “creating experimental and theoretical
models

instead of “memorizing formulas” (NCTM, 1989

of situations involving probabilities”,
70). Traditional teaching emphasized measuring of
probability using formulas such as the ‘addition
rule’ or ‘multiplication rule.” The NCTM (1989)
shows the movement from teaching formulas in
measuring  probability to teaching probability
within situated problem. This aspect is consistent
with the overall trend of NCTM (1989) which
aims that mathematics curricula help students
“recognize the need to apply a particular concept
or procedure and have a conceptual basis for
reconstructing their knowledge at a later time”
(NCTM, 1989: 10).

The Standard’s expectations for probability can
be summarized that
probabilistic

they emphasize: modeling

through
understanding
theoretical probability; and applying the probabilistic

situation experiments  or

simulation experimental and
knowledge into the real-world situations.

In the Principles and Standards, the strand of
Probability  has  the

expectations including only a few probabilistic

Data  Analysis and
concepts that middle school students need to
know: Understand and use appropriate terminology
to describe complementary and mutually exclusive
events; Use proportionality and a  basic
understanding of probability to make and test
conjectures about the results of experiments and
simulations; Compute probabilities for simple

compound events, using such methods are
organized lists, tree diagrams, and area models.
As in the Standards, middle school students’

probabilistic thirking is developed from simple

notions of chance they learned through K-4
mathematics. Middle school students need to leam
formal knowledge in probability to develop their
probabilistic thinking to higher level statistics or
probability courses. Students’ primary knowledge
or primary intuition in probability needs to be
formalized with well-organized conceptions and
skills, and sometimes, it needs to be modified
when it is not correct.

When  students are  acquiring  abstract
mathematical concepts, the transitional characteristic
of the process sometimes makes middle grade
students feel difficult to understand them. The
difficulties students have at the stage of transition
from probabilistic intuition to formal probabilistic
thinking can be resolved by helping students
experience with real activity or simulation
involving probability concepts. In regards to this,
as in the Standards, the Principles and Standards
also considers ‘modeling probabilistic situation
through experiments or simulations’ as an important
role which provides students with understanding

theoretical probability from experimental probability.

2. Analysis of the NAEP Mathematics

Assessment

In the 1990 NAEP mathematics assessment for
8th grade students, two probability questions are
asking the probabilities of simple events. In 1992
NAEP test, there are four probability questions
among nine released questions in the content of
Data Analysis, Statistics, and Probability. It is
noticed that the questions cover various concepts
in probability - likelihood of a simple event,

representativeness of a sample, and sample space.

-6 -



But some questions of them are still limited on

the simple questions with

typical format of

probability item that can be answered even
without appropriate understanding of the concepts.
For example, in the following questions, 38 %
and 73% students responded correctly, respectively.

There are

15 girls and 11 boys in a

mathematics class. 1f a student is selected at
random to run an errand, what is the probability
that a boy will be selected?

A) 4/26 B) 11726 C) 15/26 D) 11/15 E) 15/11

(NAEP Mathematics Assessment, 1990)

In a bag of marbles, 1/2 are red, 1/4 are blue,
1/6 are green, and 1/12 are yellow. If a marble
is taken from the bag without looking, it is most
likely to be

A) red B) blue C) green D) yellow

(NAEP Mathematics Assessment, 1992)

Considering that these questions were suggested
to the 8th grade students, and that the formats of
questions are multiple-choice, they would answer
right if they have just a little knowledge in fraction
regardless of understanding of probability. We need
focus on that they were not able “to justify these
[their answers] in an appropriate fashion”although
students can achieve correct

(Watson & Callingham, 2005:

numerical

151).

answers
To assess
students’ understanding of probability on uncertain

simple event, their

a question for evaluating
justifications should be suggested.
The NAEP

assessment in 1996 has two

probability related items - representative of a
sample and reasoning about sample space. As
emphasized in the objectives of probability in the
framework for the NAEP assessments between

1996 and 2003, the questions are focusing on

assessing students’ understanding of sampling and
sample space.

Two questions in 2003 NAEP assessment are
about sampling procedure and estimating the
sample size which are on the framework of 1996
NAEP assessment. Following question shows a
question which is assessing students’understanding
of bias in a sampling:

A survey is to be taken in a city to determine
the most popular sport. Would sampling opinions
at a baseball game be a good way to collect this
data? Explain your answer. (NAEP Mathematics
Assessment, 2003)

To answer correctly to this question with
short-constructed-response format, students need to
understand the biases that can happen in sampling
45%

procedure. of students produced correct

justifications, and 55% of students judged
incorrectly (50%) or made omitted answer (5%).
One incorrect answer, “No, that would only be
referring to baseball, and no other information
can be collected”, shows that this student can
reason that the sampling is not appropriate to
determine the most popular sport in a city, but
shefhe does not understand the source of bias or
sampling error.

The NAEP framework for 2005 and 2007
mathematics  assessments  has  the  objectives
involving various probabilistic concepts for middle
grade students such as sample space, randomness,
independent/dependent events, or simple/compound
events. The items for probability in 2005 and
2007 tests are trying to assess students’conceiving
probabilistic  thinking with  various  problem
formats, not only the problems asking definitions

or applying formulas. A question followed is to



ask about the idea of conditional probability:

A package of candies contained only 10 red
candies, 10 blue candies, and 10 green candies.
Bill shook up the package, opened it, and started
taking out one candy at a time and eating it. The
first 2 candies he took out and are were blue.
Bill thinks the probability of getting a blue candy
on this third try is 10/30 or 1/3. Is Bill correct
or incorrect? Explain your answer. (NAEP
Mathematics Assessment, 2005)

This problem approaches to students’ intuitive
understanding on conditional probability. In the
framework of NAEP assessment for 2005 and 2007,
although the conditional probability is restricted for
12th grade students, 8th grade students are expected
to be able to understand the situation that includes
independence of an As Watson &

Callingham (2005: 155) noted, “conditional events

event.

are considered at the same time as independent
events”. As considering the importance of the
concept of independence, this question assesses
intuitive idea about conditional event which will be

taught high middle grade levels.

VIl. Developing a Framework

The chronological analyses of the NCTM
documents and NAEP mathematics assessments
show a trend of mathematics curriculum in regard
with the change of society. In particular, the
analyses on probability content of each document
focusing on middle grade level suggest
probabilistic concepts and skills emphasized in
middle grade levels, as well as some aspects of

assessment in probability during each period.

Literature review of this paper showed the
attempts of some researchers - a study of young
children’s probabilistic thinking by Jones et al
(1997); a study of middle school students’thinking
in conditional probability and independence by
Tarr and Jones (1997); and a study of elementary
and middle school students’ probability thinking
framework by Tarr and Lannin (2005).

These studies contributed to an understanding
of students’thinking in probability by depicting
four levels which represent a continium from
level 1 (subjective) to level 4 (numerical).
However, understanding middle school students’
probabilistic thinking is limited to the concepts in
conditional probability and independence.

In this study, the framework to understand
middle school students’ thinking in probability is
integrated on the works of Jones et al. (1997),
Polaki (2005) and Tarr and Jones (1997). As in
their works, depicting levels of probabilistic
thinking is focused on the concepts and skills for
students in middle school. The concepts and skills
considered as being necessary for middle grade
students were integrated from NCTM documents
and NAEP frameworks.
in the result of the NCTM and

NAEP

As seen

frameworks  for assessments, some

probabilistic concepts are considered as necessary
for middle grade students - samples and
sampling, determining the probability of a simple
event, compound event, independence, and
conditional probability. For these five constructs
in probability, four levels are identified as
students’ thinking and skills - subjective (Level
1), transitional (Level 2), informal quantitative

(Level 3), and numerical (Level 4).



Level 1 (subjective)

Students at level 1 make their judgments for an
uncertain situation based on “subjective beliefs”. In
random sampling, students at this level tend to
provide their reasoning relying on their subjective
judgments focusing on “what is more likely to
happen rather than what is possible” (Jones et al.,
1997: 114). When determining the probability of a
simple event and compound event, they do not
-consider the quantitative information given and
rely on their subjective judgments. They typically
provide subjective probability using idiosyncratic
and deterministic reasoning (Jones et al., 1997,
Polaki et al, 2000). In

situations  involving

conditional probability, students construct
conditional probability with “their own reality”
because of their “lack of quantitative referents”
(Tarr & Lannin, 2005: 221). Therefore, students at
level 1 do not think about the situations involving
various probabilistic concepts with a meaningful
reasoning.

Level 2 (Transitional)

Students who exhibit level 2 experience
transition  between  subjective and  informal
quantitative  judgments (Jones et al., 1997).

Whereas students at level 1 do not approach to

the “mental counting line”, Level 2 students

construct this counting line when generating sets
of outcomes for compound

According to Polaki (2005: 199),

experiments.
the mental
counting line enables students “to coordinate the
notions of number and ordering needed for
comparing probabilities of simple events”. But it
them

does not enable

to generate sets of
outcomes for compound events.

Level 2 students demonstrate their predictions on

probability for simple events with “informal but
valid quantitative judgments to the most-likely or
(Polaki,
the changes

least likely event, albeit inconsistently”

2005: 199). They can recognize

occurring in  an event involving conditional

probability - e.g, the probability in a

"without-replacement”  situation. However, their
reasoning is still incomplete, sometimes confining to
events that have previously occurred. Indeed, Level
2 students frequently use a ‘“representativeness”

strategy in consecutive events with inconsistent
reasoning on independence.

Level 3 (Informal Quantitative)

Students in Level 3 have no difficulty in
listing complete sets of outcomes for simple
random experiments. Unlike students in Level 1
and Level 2, Level 3 students are also able to
provide complete sets of outcomes for compound
events

using a ‘partially generative

(Polaki et al., 2000; Jones et al., 1997).

strategy’
Level 3
students

generally use ‘quantitative judgment’

when determining probabilities. They recognize

conditional probability both of ‘with- and
without-replacement’situations. To compare
probabilities they use numerical information,

"although such students do not usually assign
precise numerical probabilities” (Tarr & Lannin,
2005: 223). They use appropriate strategies such
as relative frequencies, ratios, or some form of
odds to get the conditional probabilities. Students
event  in

recognize  independence of an

‘with-replacement’situations but “they sometimes

Tevert to a representativeness strategy  after
observing a run on one outcome in a sequence of
independent trials (as cited in Tarr & Lannin,

Shaughnessy, 1992: 224).



Table 1: framework for assessing

students’ probabilistic thinking

Basic notion of
probability

Additivity of probability

Sample space for
compound event

Conditional event and
independence

Level 1

Shows incomplete
understanding on a
chance

Incompletely understands
e axioms of
probability, especially,
0< P(E)<1 and
P(2)=1 for a certain

event E and any entire
sample space Q

Shows difficulty in
language expression
about chance and
probability of an event

Provides incomplete
understanding that, for two
disjoint sets "A and B, the
probability that A or

will hagpen.l.s the sum of
the probabilities that A
will "happen and B will
happen experiments

Exhibits inconsistent
understanding of the .
probability of events which
are involving more than
two situations

Provides incomplete sets
of outcomes for compound
experiments

Uses rial-and-error strategy
to figure the sets of
outcome, but incomplete

Is unsuccessful in
expecting sets of outcomes
for compound experiments

Ignores the change of
sample space in
w;th—replacement and
without-replacement
random sampling

Exhibits unwarranted
confidence in predicting
successive outcomes

Is unable to differentiate
independent and dependent
events

Level 2

Demonstrates some
awareness of chance
and probability

Understands ipformally
the axioms of
probability,

0< P(E)<1 and
P(2)=1

Uses appropriate
lan, uaglq to explain a
probability of an event

Incompletely applies
their u,nderstande of a
probability to real
contexts

Is able to recognize the
principle that

P(AU B) = P(A)+ P(B)

for two disjoint events A
and B

Is able to understand
informally that the
probabilify that A or B
will happen becomes
smaller when the events A
and B are not disjoint

Incompletely justifies the
probability that A or B

will happen

Is able to consider the
sets of outcomes in
compound events but
sometimes it is incomplete

Uses unsystematic stratega/
in reasoning of compoun
events

Justifies the set of
outcomes_ for compound
events with trial-and-error
strategy

Informall recogg,iz,e_s the
change of probabilities in
some events with- and
without-replacement
random sampling

Incompletely justifies the
independence “of some
events in terms of
conditional events

Sometimes depends their
reasoning, about probability
of an independent event
on inappropriate intuition

Level 3

Appropriately
lemonstrates awareness
of chance an
probability
Completely understands
and justifies

0< P(E)<1 and
P(2)=1

Is able_to e,x?lain a
probablh?' informally as
well as formally
Inconsistently a}%plies
understanding of a

probability to various
contexts

Is able to justify that

PAUB) = P(A)+ P(DB)
-~ P(AN B)

Is able to deduce the
mclusion and exclusion
principle that

P(R—-A)=P(R2)
—P(4)

from the addition rule of
probability

Inconsistently applies the
addition rulé to various
contexts

Is able to provide

complete sets of outcomes
for compound events usin
partially generative strategy

Informally justifies the set
of outcomes for compoun
evlents using multiplication
rule

g |informal]

Recognizes the change of
probabilities_in all events
in_with- and
without-replacement
random sampling

s able to deduce
meaning of
independence of some
events from conditional
probability

Exhibits appropriate
understanding of the
relationshi een

d _condiuonaF events and

independence of events

Incompletely applies
part-part or part-whole,
reasonjng to the sityations
involving conditional
events

Level 4

Completely recognizes
the meamn%_of chance
and probability

Is able to exhibit a _
probability of a certain
event with various
expressions

Consistently applies
understanding of
probability to various
contexts

Is able to explain an
ungertain situation by
using notion of
probability

Recognizes and |
appropriately justifies the
addition rule of grobablhty
and inclusion an
exclusion principle

Consistently applies the
principles of =
inclusion-exclusion
principles to various
contexts

Is able to produce a
complete set of outcomes
for compound events using
generative strategy

Is able to justify the set
of outcomes of "compound
event appropriately using
the multiplication rule

Is able to apply
understanding 6f compound
event to various situations

Completely. deduce
meaning of independence
of somé events from
conditional probability

Appropriately justifies_their
reasoning on independent
and depéndent, events in
terms of conditional
probability

Is able to apply .
appropriate proportional
reasoning to various
situations of conditional
events

10 -



Level 4 (Numerical)

Whereas students in Level 3 use a partially
generative approach in producing set of compound
outcomes, students exhibiting Level 4 use a
generative approach to list complete sets of
outcomes (Polaki et al, 2000; Jones et al., 1997).
In compound experiments, according to Polaki et
al. (2000), Level 4 students consistently produce
a complete set of outcomes using the generative
also able to wuse and

strategy. They are

systematically coordinate  arithmetical thiﬁking
using multiple counting lines. Polaki et al. (2005)
argued that this multiple counting lines distinguish
Level 4 from Level 3 students. They use sample
space as a basis for finding and comparing

numerical probabilities (Jones, Langrall, Thornton,

& Mogill, 1997). Using numerical probability
Level 4 students can recognize conditional
probability in relation to all events of an

experiment (Jones et al.,, 1997). In the situations

Level 4

‘with-replacement’, students are less

likely to use the representativeness strategy (Tarr

& Lannin, 2005).

Vil. Conclusion

The research on probabilistic thinking which
has been studied so far more focuses on the
thinking.

The researchers try to identify what intuitions

psychological aspects of probabilistic
people have and what misconceptions people tend
to show in some specific probabilistic situations.
Rather than psychological and diagnostic approach
to probabilistic thinking, we attempted to have an

understanding of students’ probabilistic thinking

with a pedagogic perspective. With this approach,
we more focused on how students think and what
differences they show when they give a
situation

The

justification in some question or
involving a specific probabilistic concept.
literature review of this paper showed that, even
though students seem to understand a probabilistic
concept in a

test, their justification on the

concept was not correct indicating they have
misunderstanding on the concept.

In order to characterize students’ probabilistic
thinking, we first indicated four probabilistic
concepts which are considered that middle school
in middle school

students should understand

grades. For those concepts, we supposed that
primary intuitions emerging in children’s thinking
students to understand

can be a base for

fundamental ideas of probability. In terms of
curriculum in mathematics, traditional probability
instruction, which mainly includes definitions and
formulas in probability, cannot link with students’
intuitive ideas. Therefore, our framework was
developed with a consideration that understanding
of probability develops from the primary intuition
into meaningful secondary intuition as their
thinking process develops.

The framework which has been studied by
some researchers characterizes students’ thinking
in probability regardless of grade level. In this
study, however, we considered that middle school
students experience a transition in their thinking
when they learn formal concepts in mathematics.
Given that there are different probabilistic
concepts supposed to be taught in mathematics
there

curriculum, and that is a big gap in

students’ thinking process among different grade
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levels, we more focused on the middle school
level in probability which needs more systematic
understanding for students’ thinking.

In addition to more focused framework on
middle school grade levels, we have different
criteria to identify students’ level of thinking
from the existing framework. The previous
framework classifies the levels according to how
well students apply the strategy to get a right
answer in a quantitative perspective. For example,
they identify students who see the meaning of
probability in a deterministic view as level 1, and
students who can assign a numerical probability
to an event as level 4 (Polaki, 2005). Rather than
understanding students’ probabilistic thinking with
diagnostic perspective of whether or not they got
correct, we approached to a developed framework
which could explain "how much students those
concepts understand well’, and ’how they justify
their answers with what strategy’.

This

probabilistic concepts and skills, nor does it

framework does mnot involve all
include valid evidence for the effectiveness of its
application. Nevertheless, it is still worth when
we are to see how students reason in a specific
probabilistic concept. Moreover, the framework
gives an insight for probability instruction which
can help students develop their primary intuition

as they learn formal probabilistic concepts.
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