• Title/Summary/Keyword: 학교 대수

Search Result 176, Processing Time 0.028 seconds

Analysis of the Algebraic Thinking Factors and Search for the Direction of Its Learning and Teaching (대수의 사고 요소 분석 및 학습-지도 방안의 탐색)

  • Woo, Jeong-Ho;Kim, Sung-Joon
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.4
    • /
    • pp.453-475
    • /
    • 2007
  • School algebra starts with introducing algebraic expressions which have been one of the cognitive obstacles to the students in the transfer from arithmetic to algebra. In the recent studies on the teaching school algebra, algebraic thinking is getting much more attention together with algebraic expressions. In this paper, we examined the processes of the transfer from arithmetic to algebra and ways for teaching early algebra through algebraic thinking factors. Issues about algebraic thinking have continued since 1980's. But the theoretic foundations for algebraic thinking have not been founded in the previous studies. In this paper, we analyzed the algebraic thinking in school algebra from historico-genetic, epistemological, and symbolic-linguistic points of view, and identified algebraic thinking factors, i.e. the principle of permanence of formal laws, the concept of variable, quantitative reasoning, algebraic interpretation - constructing algebraic expressions, trans formational reasoning - changing algebraic expressions, operational senses - operating algebraic expressions, substitution, etc. We also identified these algebraic thinking factors through analyzing mathematics textbooks of elementary and middle school, and showed the middle school students' low achievement relating to these factors through the algebraic thinking ability test. Based upon these analyses, we argued that the readiness for algebra learning should be made through the processes including algebraic thinking factors in the elementary school and that the transfer from arithmetic to algebra should be accomplished naturally through the pre-algebra course. And we searched for alternative ways to improve algebra curriculums, emphasizing algebraic thinking factors. In summary, we identified the problems of school algebra relating to the transfer from arithmetic to algebra with the problem of teaching algebraic thinking and analyzed the algebraic thinking factors of school algebra, and searched for alternative ways for improving the transfer from arithmetic to algebra and the teaching of early algebra.

  • PDF

A Study on Approaches to Algebra Focusing on Patterns and Generalization (패턴과 일반화를 강조한 대수 접근법 고찰)

  • 김성준
    • School Mathematics
    • /
    • v.5 no.3
    • /
    • pp.343-360
    • /
    • 2003
  • In this paper, we deal with the teaching of algebra based on patterns and generalization. The past algebra curriculum starts with letters(variables), algebraic expressions, and equations, but these formal approaching method has many difficulties in the school algebra. Therefore we insist the new algebraic approaches should be needed. In order to develop these instructions, we firstly investigate the relationship of patterns and algebra, the relationship of generalization and algebra, the steps of generalization from patterns and levels of difficulties. Next we look into the algebra instructions based arithmetic patterns, visual patterns and functional situations. We expect that these approaches help students learn algebra when they begin school algebra.

  • PDF

A study on the 6th graders' learning algebra through generalization of mathematical patterns (초등학교 6학년의 패턴의 일반화를 통한 대수 학습에 관한 연구)

  • Kim, Nam-Gyun;Lee, Eun-Suk
    • Communications of Mathematical Education
    • /
    • v.23 no.2
    • /
    • pp.399-428
    • /
    • 2009
  • 2007 Renewed Korea Elementary Mathematics Curriculum introduce algebra 6th grade. According to many studies about introducing algebra, it is desirable to teach 6th graders algebra through generalization of patterns. In this study, 6th graders' understanding processes and difficulties in pattern generalization were analyzed and possiblities of introducing algebra to 6th graders through pattern generalization were examined.

  • PDF

A study on the teaching of algebraic structures in school algebra (학교수학에서의 대수적 구조 지도에 대한 소고)

  • Kim, Sung-Joon
    • Journal of the Korean School Mathematics Society
    • /
    • v.8 no.3
    • /
    • pp.367-382
    • /
    • 2005
  • In this paper, we deal with various contents relating to the group concept in school mathematics and teaching of algebraic structures indirectly by combining these contents. First, we consider structure of knowledge based on Bruner, and apply these discussions to the teaching of algebraic structure in school algebra. As a result of these analysis, we can verify that the essence of algebraic structure is group concept. So we investigate the previous researches about group concept: Piaget, Freudenthal, Dubinsky. In our school, the contents relating to the group concept have been taught from elementary level indirectly. Tn elementary school, the commutative law and associative law is implicitly taught in the number contexts. And in middle school, various linear equations are taught by the properties of equality which include group concept. But these algebraic contents is not related to the high school. Though we deal with identity and inverse in the binary operations in high school mathematics, we don't relate this algebraic topics with the previous learned contents. In this paper, we discussed algebraic structure focusing to the group concept to obtain a connectivity among school algebra. In conclusion, the group concept can take role in relating these algebraic contents and teaching the algebraic structures in school algebra.

  • PDF

The Analysis of Algebra Conception in Mathematics Textbooks of Korea, America and Japan (한.미.일 수학 교과서에 나타난 대수 개념의 유형 분석)

  • Lim, Mi-Ran;Song, Yeong-Moo
    • Journal of the Korean School Mathematics Society
    • /
    • v.11 no.1
    • /
    • pp.133-157
    • /
    • 2008
  • This paper is based on theory of Usiskin who defined inclusively the various concepts of algebra among many theories classifying a type of the algebra. For this purpose, we examined the curriculum of the algebra of Korea, America and Japan, then analyzed where the problems in "Letter and Formula" of the textbooks fall under Usiskin's concepts of algebra.

  • PDF

선형 대수의 가르침에 고려하여야 할 사항에 관한 연구

  • Choe, Yeong-Han
    • Communications of Mathematical Education
    • /
    • v.18 no.2 s.19
    • /
    • pp.93-108
    • /
    • 2004
  • Wassily Leontief가 미국 경제의 모델에 선형 대수를 적용한 이론으로 1973년에 노벨 경제학상을 받은 후로는 인문${\cdot}$사회 과학(특히 상경(商經) 분야)을 전공하는 사람에게도 선형 대수는 큰 관심 분야가 되었다. 그래서 1980년대 부터는 대학의 기초 과목으로써 선형 대수를 가르치는 것은 유행처럼 퍼졌고 또 가르침에 관한 연구도 활발하여졌다. 현행 우리나라의 초${\cdot}$${\cdot}$고등 학교의 수학과 교육과정(이른바 “제 7차 개정”) 속에는 선형대수의 내용이 어느 정도 있으나 학생들에게 확실한 개념을 갖도록 가르치고 있지 않다. 수직선, 순서 쌍, n-겹수, 직교 좌표, 벡터 등 해석기하적인 내용과 선형 방정식계의 풀이법(가우스${\cdot}$조르단 소거법을 쓰지 않는 풀이법) 등 일반 대수적인 내용은 다루지만 선형 변환, 벡터 공간의 구조 등은 다루지 않는다. m${\sim}$n 행렬은 수학II에 나와 있긴 하나 소개하는 정도에 그친다. 한편 과학 계열 고등학교 학생을 위한 "고급 수학"에는 비교적 많은 양의 선형 대수의 내용이 있다. 일반 계열 고등학교의 수학에서도 선형 대수의 내용을 확장하고 학생들에게 확실한 개념을 갖도록 가르쳐서 이들이 대학에 진학하여 전공 분야에서 아무 어려움이 없도록 하는 것이 바람직하다.

  • PDF

Fostering Algebraic Reasoning Ability of Elementary School Students: Focused on the Exploration of the Associative Law in Multiplication (초등학교에서의 대수적 추론 능력 신장 방안 탐색 - 곱셈의 결합법칙 탐구에 관한 수업 사례 연구 -)

  • Choi, Ji-Young;Pang, Jeong-Suk
    • School Mathematics
    • /
    • v.13 no.4
    • /
    • pp.581-598
    • /
    • 2011
  • Given the growing agreement that algebra should be taught in the early stage of the curriculum, considerable studies have been conducted with regard to early algebra in the elementary school. However, there has been lack of research on how to organize mathematic lessons to develop of algebraic reasoning ability of the elementary school students. This research attempted to gain specific and practical information on effective algebraic teaching and learning in the elementary school. An exploratory qualitative case study was conducted to the fourth graders. This paper focused on the associative law of the multiplication. This paper showed what kinds of activities a teacher may organize following three steps: (a) focus on the properties of numbers and operations in specific situations, (b) discovery of the properties of numbers and operations with many examples, and (c) generalization of the properties of numbers and operations in arbitrary situations. Given the steps, this paper included an analysis on how the students developed their algebraic reasoning. This study provides implications on the important factors that lead to the development of algebraic reasoning ability for elementary students.

  • PDF

A study on elementary school algebra -focusing on 'early algebra'- (초기대수'를 중심으로 한 초등대수 고찰)

  • 김성준
    • Journal of Educational Research in Mathematics
    • /
    • v.13 no.3
    • /
    • pp.309-327
    • /
    • 2003
  • In this paper, we deal with the teaching of algebra in the elementary school mathematics, and call this algebra teaching method as ‘early algebra’. Early algebra is appeared in the 1980's with the discussion of ‘algebraic thinking’. And many studies about early algebra is in progress since 1990's. These studies aims at reducing difficulties in the teaching of algebra and the development of algebra curriculum. We investigate the background of early algebra, and justify teaching of early algebra. Also we examine the projects and studies in progress around the world. Finally through these discussions, we compare our elementary textbooks with early algebra, and verify the characters of early algebra from our arithmetic curriculum.

  • PDF

Analysis on the Principles for Teaching Algebra Revealed in Clairaut's (Clairaut의 <대수학 원론>에 나타난 대수 지도 원리에 대한 분석)

  • Chang, Hye-Won
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.3
    • /
    • pp.253-270
    • /
    • 2007
  • by A.C. Clairaut was written based on the historico-genetic principle such as his . In this paper, by analyzing his we can induce six principles that Clairaut adopted to teach algebra: necessity and curiosity as a motive of studying algebra, harmony of discovery and proof, complementarity of generalization and specialization, connection of knowledge to be learned with already known facts, semantic approaches to procedural knowledge of mathematics, reversible approach. These can be considered as strategies for teaching algebra accorded with beginner's mind. Some of them correspond with characteristics of , but the others are unique in the domain of algebra. And by comparing Clairaut's approaches with school algebra, we discuss about some mathematical subjects: setting equations in relation to problem situations, operations and signs of letters, rule of signs in multiplication, solving quadratic equations, and general relationship between roots and coefficients of equations.

  • PDF

A Review of Teaching the Concept of the Matrix in relation to Historico-Genetic Principle (역사발생적 관점에서 본 행렬 지도의 재음미)

  • Cho, Seong-Min
    • Journal of the Korean School Mathematics Society
    • /
    • v.12 no.1
    • /
    • pp.99-114
    • /
    • 2009
  • Although they are interested in Linear Algebra not only in science and engineering but also in humanities and sociology recently, a study of teaching linear algebra is not relatively abundant because linear algebra was taken as basic course in colleges just for 20-30 years. However, after establishing The Linear Algebra Curriculum Study Group in January, 1990, a variety of attempts to improve teaching linear algebra have been emerging. This article looks into series of studies related with teaching matrix. For this the method for teaching the concepts of matrix in relation to historico-genetic principle looking through the process of the conceptual development of matrix-determinants, matrix-systems of linear equations and linear transformation.

  • PDF