• Title/Summary/Keyword: 하중의 기울기

Search Result 106, Processing Time 0.033 seconds

Surface damage accumulation in alumina under the repeated Inclined contact forces (수직-수평 반복하중을 받는 알루미나 표면에서의 피로손상 누적)

  • 이권용;최성종
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.61-66
    • /
    • 1999
  • 반복 응력 상태 아래서 알루미나 세라믹의 피로 표면손상 누적현상이 분석되었다. 연속 미끄럼 접촉 시에 발생하는 응력 상태를 재현하기 위해서 동시에 작용하는 수직-수평 반복 압축하중 기법이 사용되었다. 알루미나 구와 평판의 접촉면에서 알루미나 미세 결정의 피로 파손에 의한 마모 입자 형성 기구가 관찰되었고, 반복하중의 횟수와 수직-수평 하중비가 커질수록 마모량은 증가하였다. 반복 접촉하중에 의한 표면손상 누적이 접촉 수직 변위 측정으로 정량화 되었다. 두 접촉 구조물의 강성 (하중-변위 선도의 기울기) 변화가 두 재질의 탄성계수의 변화로 표현되었다.

  • PDF

Analysis of Dynamic Behavior of a Single Pile in Dry Sand by 1g Shaking Table Tests (1g 진동대 실험을 통한 건조사질토에 근입된 단독말뚝의 동적 거동 분석)

  • Lim, Hyun-Sung;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.7
    • /
    • pp.17-28
    • /
    • 2017
  • This paper presents the investigation of dynamic behavior of a single pile in dry sand based on 1g shaking table tests. The natural frequency of soil-pile system was measured, and then a range of loading frequency was determined based on the natural frequency. Additionally, the studies were performed by controlling loading accelerations, pile head mass and connectivity conditions between pile and cap. Based on the results obtained, relatively larger pile head displacement and bending moment occur when the loading frequency is larger than the natural frequency of soil-pile system. However, the slope of the p-y curve is smaller in the similar loading frequency. Also, it was found that inertia force like input acceleration and pile head mass, and relation of the natural frequency of soil-pile system and input frequency have a great influence on the slope of dynamic p-y curve, while pile head conditions don't.

Comparison of Performance with Backfill Inclination Slope and Shape in Railway Abutment and Transitional Zone Using Centrifuge Model Tester (원심모형실험기를 이용한 철도 교대접속부 배면 기울기 및 형상에 따른 성능비교)

  • Choi, Chan-Yong;Kim, Hun-Ki;Park, Jung-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.85-93
    • /
    • 2018
  • A existing standard design section of transitional zone between bridge and earthwork section in high speed railway should be designed to gradually change support stiffness from bridge abutment to backfill side that were placed on cemented stabilized gravel, general gravel, soil materials. The larger the backfill slope of the general gravel and soil was more structurally stable, but there is no clear reason about them. In this study, it was compared with settlement and bearing capacity of backfill area in currently design and alternating backfill slope section using large centrifuge tester. As the experimental results, it was showed that the 1:2 slope and 1:1.5 slope have almost similar bearing capacity behavior under the load stage as railway loading level.

Three Dimensional Finite Element Analysis on Stress Distribution According to the Bucco-lingual Inclination of the Implant Fixture and Abutment in the Mandibular Posterior Region (하악 구치부에서 임플란트 고정체와 지대주의 협설 기울기에 따른 응력분포에 관한 삼차원 유한요소 분석)

  • Lee, Hyun-Sook;Kim, Ji-Youn;Kim, Ye-Mi;Kim, Myung-Rae;Kim, Sun-Jong
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.4
    • /
    • pp.371-392
    • /
    • 2011
  • The purpose of this study was to comparatively analyze the stress distribution according to the inclinations of abutments and angulations of the implant fixtures under occlusal loading force. Three study models with straight and $15^{\circ}$ and $25^{\circ}$-angled abutments were prepared following the insertion of Implants parallel to the long axis of the tooth. Additional two experimental models were fabricated with $15^{\circ}$ and $25^{\circ}$ fixture inclinations. Using ANSYS 11, a finite element analysis program, the magnitudes of stress distribution were analyzed. The magnitude of stress under loading was lowest when the load was applied vertically onto the axis of implant. And the magnitude of stress under compound(vertical+oblique) loading was increased as the inclination of implant abutment and fixture was increase. But, the distribution of stress was different as the loading conditions, because of the horizontal offset. As the offset between the axis of loading and the central axis of the implant increased, the stress was increased.

Evaluation of Model equation Predicting Roll Force and Roll Power during Hot rolling (열간압연중 압연하중 및 압연동력 에측모델)

  • 황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.265-268
    • /
    • 1999
  • 열간 박판 압연공정에서의 압연하중 압연동력을 실시간으로 계산할 수 있는 모델식을 유한요소 해석결과들을 이용하여 개발하였다 압연하중 압연동력값 결정에 비교적 큰 영향을 주는 인자들로는 형상계수 압하률, 률직경 률속도 스트립 입측온도, 탄소함량, 마찰계수들은 이론적으로 계산이 가능한 무마찰의 균일 평면 변형유 압축공정의 금형하중(F、) 동력 (P、)식을 도입함으로써 내삽모델식에서 제외시킬수 있었다 쿨롱마찰계수($\mu$) 0.3 일 경우의 유한요소해석 결과 데이터들을 내삽법(interpolation)을 통해서 다항식 형태로 {{{{ {F } over {F、 } }}}}, {{{{ { {P }_{f } } over { {P }_{d } } }}}}, {{{{ { {P }_{d } } over { {P }^{、 } } }}}} 식들을 구하였다 마찰계수에 따른{{{{ {F } over {F、 } }}}} {{{{ {P } over { {P }^{、 } } }}}}값의 변화는 형상계수에 따라 기울기가 결정되는 직선 형태로 나타내어짐을 유한요소해석 결과로부터 관찰 할 수 있었다. 이와같이 구한 압연하중 압연동력 모델식의 유효성을 검증하기 위해 무작위로 추출한 실제공정들에서 모델식으로 계산한 압연하중 압연동력 값들을 유한요소해석결과와 서로 비교해 보았다.

  • PDF

The Improved Load/Displacement Incremental Method (개선된 하중 및 변위 증분법)

  • Kim, Moon-Young;Chu, Seok-Beom;Chang, Sung-Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.31-42
    • /
    • 1996
  • 본 연구에서는 박벽 구조물의 기하학적 비선형 해석을 수행하기 위하여 개선된 하중 및 변위 증분의 조합법이 제시되었다. 제안된 알고리즘은 기존의 하중 및 변 변위 증분의 조합법 이 고정된 증분량을 갖는 점을 개선하여, 수렴정도에 따라 증분량을 변화시킴으로써, 여러개의 임계점을 갖는 비선형 거동을 보다 효율적으로 추적하도록 하였다. 또한 하중 및 변위 증분법을 전환점을 첫 단계의 기울기에 비례한 값으로 대체함으로써 사용자의 편리를 도모하였다. 트러스, 공간 뼈대, 아치, 쉘 구조물 등의 기하학적 비선형 해석 예제를 통하여, 본 연구에서 제시한 개선된 하중 및 변위 증분의 조합법의 적용성을 입증하였다.

  • PDF

Evaluation of Lateral Pile Behavior under Cyclic Loading by Centrifuge Tests (원심모형 실험을 이용한 반복하중을 받는 모노파일 거동 평가)

  • Lee, Myungjae;Yoo, Mintaek;Park, Jeongjun;Min, Kyungchan
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.6
    • /
    • pp.39-48
    • /
    • 2019
  • This study investigated the lateral behavior of monopile embedded in the dry sand through cyclic lateral loading test using a centrifuge test. The sand sample for the experiment was the dry Jumunjin standard sand at 80% relative density and the friction angle of $38^{\circ}$. In the experimental procedure, firstly, it was determined the static lateral bearing capacity by performing the static lateral loading test to decide the cyclic load. This derived static lateral bearing capacity values of 30%, 50%, 80%, 120% were determined as the cyclic lateral load, and the number of cycle was performed 100 times. Through the results, the experiment cyclic p-y curve was calculated, and the cyclic p-y backbone curve by depth was derived using the derived maximum soil resistance point by the load. The initial slope at the same depth was underestimated than API (1987) p-y curves, and the ultimate soil resistance was overestimated than API (1987) p-y curves. In addition, the result of the comparison with the suggested dynamic p-y curve was that the suggested dynamic p-y curve was overestimated than the cyclic p-y backbone curve on the initial slope and soil resistance at the same depth. It is considered that the p-y curve should be applied differently depending on the loading conditions of the pile.

Vibration Analysis for the Defective Ball Bearing under Radial Loads (반경하중을 받고있는 결함 볼베어링의 진동분석)

  • Kang, Byoung-Yong;Lee, Woo-Seop;Chang, Ho-Gyeong;Kim, Ye-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.21-28
    • /
    • 1997
  • In this study, comparison between Harris-theoretical values and experimental data of load-deflection characteristics in bearing was made. The experiments are conducted under the conditions of the various radial loads and speed of shaft. In the case of non-defective ball bearing, the experimental data agreed well with the Harris-theoretical values for the small steady radial load but not for the large steady radial load. For the radial load bearing, the experimental results show that the stiffness of bearing at the single and multiple defective bearing are bigger in the radial defectiion than in the axial deflection. Load-deflection characteristics for the bearing defect part make it possible to detect the presence of a defect in bearing.

  • PDF

크립현상을 고려한 PMMA의 상온 나노압입실험에 대한 연구

  • 윤성원;김현일;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.133-133
    • /
    • 2004
  • 박막이나 초미세 구조체의 경도 및 탄성계수 측정을 위한 나노 압입실험에서는 Oliver & Pharr가 제안한 하중-변위 측정 나노압입법이 널리 쓰이고 있다 위 실험법에서, 나노경도(nano-hardness; H$_{n}$)는 최대하중을 계산된 접촉면적 (A$_{c}$)으로 나누어 평가하고, 압입자 및 박막의 탄성성질을 포함하는 환산 탄성계수 (reduced modulus ; E$_{r}$)는 하중제거곡선의 초기 기울기인 접촉탄성강성 (S)를 이용하여 계산한다. 그러나, 하중-변위 측정 나노압입법에서는 탄성 및 소성변형만이 고려되고 시간 의존적 변형거동 (time dependent deformation; TDD)은 고려되지 않는다.(중략)

  • PDF

Analysis of Dynamic Behavior of Group Piles in Asymmetric Ground (비대칭지반에 설치된 무리말뚝의 동적거동 분석)

  • Kyungil Cho;Hongsig Kang;Kusic Jeong;Kwangkuk Ahn
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.10
    • /
    • pp.41-49
    • /
    • 2023
  • Structures such as bridge columns installed on the asymmetric ground such as mountain areas and sloping ground are subject to various loads such as wind, temperature, earthquake, and etc. The pile foundation is generally applied to bridge columns on the asymmetric ground in order to stably support structures. The behavior of the pile foundation supporting bridge columns changes due to various load conditions. In particular, ground-pile-structure interactions should be studied to analyze the behavior of the pile foundation that supports bridge columns effected by dynamic loads such as earthquakes. The pile foundation installed on the asymmetric ground effected by the earthquake has the complicated dynamic interaction between the foundation and the ground due to the ground slope, the difference in soil resistance according to the shaking direction, and the ground movements. In this study, the 1g shaking table tests were conducted to confirm the effect of the slope of the sloping ground on the dynamic behavior of group piles supporting the superstructure installed at the berm of the sloping sandy soil which is the asymmetric ground. The result shows that the acceleration of the pile cap and the superstructure decrease as the slope of the sloping ground increase, and the slope of the dynamic p-y curve of the pile decrease.