dIERz!

5% 3 9

=Y
Rk

The Improved Load /Displacement Incremental Method

2 2 @ -

KIM, Moon-Young

=
a

ABSTRACT : & oA =
He 33 2 8

We Z2ro] 2o nAHH FEEL
MaA o zA, ofelie) dAEE
st =3 &% % HY FEUS
o g Agatel Hel g =Rt B
SERRLEEEE R
Yo HE4g 43U

Wy Pz

ml

)4\‘

2

Keyword : 315 % H9 F ¥

1. INTRODUCTION

In the post-buckling analyses of slender
structures with rotational degrees of freedom,
a special numerical technique must be adopted
to trace the multiple load and displacement
limit points, because the stiffness matrix in
the vicinity of the limit point is nearly
singular, and the descending branch of the
load-deflection curve is characterized by a
negative definite stiffness matrix.

Many methods have been proposed to solve
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limit point problems and there are a number of

numerical algorithms such as the load in-

cremental method!”, the displacement in-
cremental method®”, and the arc-length
method and its different variations™?. The

load incremental scheme based on the conven-
tional Newton-Raphson method fails to con-
verge in the case of passing the snap-through
region with the load limit points. To circum-
vent this problem, Batoz and Dhatt'® proposed
the displacement incremental algorithm which
preserved the symmetry and banded nature of
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the tangent stiffness matrix. This scheme can
trace the snap-through behavior, but not the
turning-back behavior with the displacement
limit points.

In order to overcome these problems existing
in the load and displacement incremental
method, the arc-length method was proposed.
This scheme keeps a arc-length constant. In
recent years, considerable efforts have been de-
voted to the development of the reliable and ef-
ficient arc-length algorithms which allow

points to be traversed.

{8]

various limit
Particularly, Bellini and Chulya'® have criti-
cally studied the problem on the choice of
arc-length increment and the choice of the ap-
propriate root of the iterative load increment
in the arc-length method. Kim and Chang'"”
have proposed the automatic combination al-
gorithm of load and displacement incremental
method. This scheme keeps the load or dis-
placement increment constant.

In this paper, the improved load/displace-
ment incremental method that can trace the
entire equilibrium path efficiently, is proposed.
The so called ‘tangent stiffness parameter’ is de-
fined and a improved algorithm of combining
the load

algorithms is proposed by using its geometric

and displacement incremental
properties. With this algorithm, load and dis-
placement limit points and bifurcation points
with a steep negative slope are traceable.
Numerical examples on the post-buckling
behaviors of space trusses, space frames, arches
and shell structures are presented to demon-
strate the applicability of the proposed load /

displacement incremental algorithm.
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2. THE IMPROVED LOAD/ DISPLACE-
MENT INCREMENTAL METHOD

In this study, a improved algorithm of com-
bining the load and displacement incremental
method are presented to trace the non-linear
behaviors of slender structures, efficiently.
This scheme can trace the entire equilibrium
path of a structure with multiple limit points
by applying the displacement incremental
method to the snap-through area and the load
incremental method to the turning-back area
alternately. Firstly, the load incremental
method and the displacement incremental
method are shortly presented, respectively, in
order to develope the improved automatic
load / displacement incremental method. Next
the so called ‘tangent stiffness parameter’ T, is de-
fined and finally, the technique of combining
the load
algorithms is proposed by using this par-

and displacement incremental

ameter.

2.1 Load Incremental Method

It is assumed that total displacements, and
external and internal forces at the discrete
time points 0, Af, 2At,--, ¢ have already been
known. With the use of the Newton-Raphson
iteration procedure and the assumption that
the loading is proportional, the load incremen-
tal equilibrium equations between time ¢ and
t+ At are

L+ALK(1‘!—1J . AU(i)=l+Ath‘L+AtF(i*ll (13)
t+AtUm=t+AzU(i—1)+AU(i) i=1,2, 3 (1b)
AR ='214AA (1c)
The initial conditions :

L+AtU(0)=tU’ z+AtF(O)=mF (ld)



where " K4 denotes the tangent stiffness
matrix consisting of the linear and the nonlin-
ear stiffness matrices in the ith iteration, AU"
is an incremental displacement vector, 4 is the
load parameter, P is the reference load vector
denoting the relative ratio of the externally ap-
plied load vector, “**AP is the nodal force
vector in the configuration at time t+At, and
'F is the nodal force vector corresponding to
the element stresses.

In the load incremental method, increment of
load parameter Al remains constant during
iteration process. Therefore, the total number
n of equilibrium equations becomes equal to
that of the unknown displacement components.
The load incremental algorithm is summarized
as follows :

1) Form equation (la), the displacement
increment AU due to the unbalanced load
vHat ) p—tHapl-l) g computed in the ith iter-
ation.

2) The total displacement “**UY is eval-
uated, and the internal nodal force '"F®
corresponding to the total displacement is de-
termined.

3) The new unbalanced load vector ‘**'1P—
“ap js evaluated by keeping the load
parameter ‘"] constant, and the Newton-
Raphson method is iteratively applied until the
equilibrium condition at time ¢+ At is satisfied.

4) If the equilibrium state is reached, a k-th
incremental displacement component AU,, (=
“ay.—Uy) is stored. This value is used in
order to switch the load incremental scheme to
the displacement scheme auto-matically, when
the displacement incremental method should be
applied in next step.
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2.2 Displacement Incremental Method

In the displacement incremental algorithm,
it is assumed that the increment of the load
parameter is unknown but the increment of a
specific displacement component is kept con-
stant during the iteration. Using the Batoz
and Dhatt technique” based on the above as-

sumption, equation (1) may be rewritten as

t+AtK(’1rl) AU = A . p— R (2a)
RO = tHih . p_vraplil o] 2, 3eeeee (2b)
Ay = a4y (2¢)
A = g4 A2 (2d)

The initial conditions :
t+AzU(0) = :U’ !+AtF(0)=tF, nLA:}.(O)=t+At}L (Ze)

where AA" is the incremental load parameter
and R" is the unbalanced load vector in the ith
iteration.

Since the total number n of equations (2a)
and (2b) is less than the number n+1 of
unknowns, a constraint equation to keep the
increment of a specific displacement component
constant during the iteration is introduced. In
the displacement incremental algorithm, the
increments of the load parameter and the dis-
placement vector are calculated using this con-
straint equation. The displacement incremental
algorithm to evaluate A" and AU is summa-
rized as follows :

1) The displacement increments AUY and
AU} due to the unbalanced load R" and the
reference load P, respectively, are computed

from equation (3).

H-AtK(Tg—l) . AU;;” = R(i) (38.)
H"A'.K(lrl;*l) . AUg) —_ P (3b)
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2) The constraint equation for the k-th
component of the displacement vector in the

first iteration is

AU V=AY - AUp Y — AU gV = (AU e (4)

where AU, , denotes the k-th component of
vector AU. The increment of the load
parameter in the first iteration is calculated
from equation (4) and the remaining incremen-
tal displacement components are determined

from equation (5).

AUY=AY - AU —AUY (5)

3) The constraint equation for the k-th dis-
placement component after the first iteration

is

AU =A2" - AU =AU Ry= (6)

From equation (6), increment of the load
parameter is determined and the remaining in-
cremental

displacement = components are

obtained from equation (7).

AU =ALD « AUY —AUY i=1,2, 3 (7)

4) The total displacement is evaluated from
the incremental displacement, and the new
t+A‘/:.(l)P_l+AIF(i)

corresponding to the load parameter ‘**Ai"

unbalanced load  vector
is
determined.

5) If the equilibrium state is reached, a in-
cremental load parameter AA(=""1-'1) is
stored. This value is used in order to switch
the displacement incremental scheme to the
load scheme automatically, when the load in-
cremental method should be applied in next

step.
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2.3 Improved Combination Algorithm of the
Load and Incremental

Method

Displacement

In order to introduce the key idea of the

combined load / displacement incremental
method, the relation curve between a load
parameter and a specific displacement(see Fig.
1) is considered. In Figure 1, the !oad in-
cremental method can find the turning-back
regions(solid lines) with the displacement
limit points (points C, D) but not the
snap-through regions(dot lines) with the load
limit points(points B, E), whereas the dis-
placement incremental method can trace the
snap-through path but not the turning-back
path. Therefore, the entire non-linear path with
multiple limit points can be traced by applying
the displacement incremental method to the
snap-through path and the load incremental

method to the turning-back path alternately.

LOAD FACTOR

DISPLACEMENT

Fig. 1 Load - Displacement Curve in the Case of
Snap-buckling

For efficient combination of two incremental
schemes and automatic generation of the load

and displacement increments, three important



problems should be solved at the beginning of

each time step :

1. the criterion to choose the load or dis-
placement incremental method

2. the determination of the sign of the load
or displacement increment.

3. the determination of the magnitude of the

load or displacement increment.

Firstly, to determine the type of the in-
cremental method applied in each time step,

the ‘tangent stiffness parameter’ T, is defined as

follows (see Fig. 1)

di

7;‘ - dek

(8)

where dA and dU, are the incremental load
parameter and the increment of the specific
displacement component, respectively. The
parameter 7, is calculated by inverting a
specific component of the displacement in-
crement due to the reference load vector in the
first iteration of each time step. Since T, means
the tangent of the relation curve between the
load parameter and the specific displacement
component, the absolute value of 7, becomes
small in the snap-through area and large in the
turning-back area. Therefore, the type of the
incremental method can be automatically de-
termined by using this geometric property of
T.. Namely, the load incremental method is ap-
plied if the absolute value of T, is greater than
the inputted positive value. Otherwise, the dis-
placement incremental method is applied.

Secondly, the sign of the current increment,

i. e. the load or displacement increment in the
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current time step, should be determined. In
Figure 1, it can be noted that the specific dis-
placement increment has the same sign in the
snap-through area, and the load increment the
same sign in the turning-back area. Accord-
ingly, regardless of the type of the previous in-
cremental scheme, the sign of the current in-
crement should be the same as that in the
previous time step.

Thirdly, the magnitude of the current in-
crement should be determined. In this study,
two schemes generating the current increment
automatically are presented to ensure the ef-
ficiency of the load/displacement incremental
method. The first scheme varies the length of
the load or displacement increment according
to the square root of the convergent ratio in
the previous step like as the arc-length algor-
ithm'™ (see equation (10) and (12)). Whereas,
the second scheme!"” keeps constant the absol-
ute value of the load increment or a specific
displacement increment (see equation (11) and
(13)).

Basing on the above procedures, the entire
non-linear path with multiple limit points can
be traced by applying the displacement in-
cremental method to the snap-through path
and the load incremental method to the
turning-back path. Consequently, the combi-
nation scheme of the load and the displacement
incremental method is summarized as follows :

1) Initialize state variables such as displace-
ment, stress and strain components, reactions
and unbalanced load and prepare input
parameters such as geometric and material
properties, connectivity, and boundary
conditions.

2) Prepare the reference load vector P where
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represents only the relative ratio of load
components.

3) Start the time step loop

4) Evaluate the tangent stiffness matrix and
the displacement increment due to the
reference load vector before iteration process of
each time step.

5) Evaluate T, as the inverse of the specific
component of the displacement increment due
to the reference load vector.

6) Apply the incremental displacement
method in the current time step if the follow-
ing condition (9) is satisfied. Otherwise, apply

the incremental load method.
| ‘T, | <DETOL - | °T, | (9

where °T, and ‘7, denote the tangent stiffness
parameters at the initial and current time
step, respectively, and DETOL is the positive
ratio given by the input value (usually, DETOL
= 0.3~04).

7) In the first time step, the magnitude and
sign of the load or displacement increment is
given by the input value.

8) From the step 6), if the scheme of the cur-
rent time step is determined as the load in-
cremental method, the magnitude and sign of
the load increment is obtained by the following
two procedures :

(a) scheme 1 : the variable length scheme'®

(AA)sw = AMP - (AX)ou (10a)

_ [NTARG 1
AMP = \"NGCONV (10b)

where (A1),. and (Al),; are the increments of

the load parameter in the current step and the
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previous step, respectively. NCONV is the
converged iteration number in the previous
step, and NTARG is the target iteration
number given by the input value.

(b) scheme 2 : the constant length scheme!™

(AX) o

A =T a0l

° (Al)mp (11)

where (A1), is the positive input value for
the load parameter increment.

9) From the step 6), if the scheme of the cur-
rent time step is determined as the displace-
ment incremental method, the magnitude and
sign of the displacement increment is obtained
by the following procedure :

(a) scheme 1 : the variable length scheme'

(Ath)new=AMP * (AU’k)old (12)

where (AU ,4)mw and (AU ;)¢ are the displace-
ment increments in the current step and the
previous step, respectively.

(b) scheme 2: the constant length scheme!™
(AU o

(AU o = ———
* (AU )|

< (AU Winp (13)

where (AU,.)w, is the positive input value
for the displacement increment.

10) With the load or displacement incremen-
tal method, apply the iterative Newton-
Raphson method within admissible maximum
iteration (MITER) until the following conver-

gence condition is satisfied :

Ev.+Atl(i)P_:+AtF(i)|S100 . ’IULER . |t/lPl (14)

where TOLER is the convergence tolerance

given by the input value.



11) If it is converged within admissible
maximum iteration, store the converged state
variables for the current configuration and go
to the step 4).

12) In order to avoid a divergence, if not
converged within maximum iteration, reread
the stored state variables at the previous step
and with half-increment of the load or the
specific displacement component, go to the step
4) and the iteration is restarted from the
previous equilibrium state.

From the proposed algorithm, it can be
noted that in the first time step, the load or
displacement increment should be given as the
inputted value, but in the subsequent steps,
the sign and the magnitude of the current in-

crement is automatically generated.

3. NUMERICAL EXAMPLES

In this chapter, numerical examples focused
on geometrically non-linear analysis of slender

structures using the space truss element, the

space Hermitian frame element'', and the
curved beam'” and shell element'" are
presented to demonstrate the reliability and
the computational efficiency of the proposed al-
gorithm. The space truss element means the
two noded straight element with only
translational degrees of freedom and the space
frame element denotes the two noded element
using Hermitian polynomials as the shape func-
tion. Also, the curved beam and shell elements

are the degenerate 3-node beam'" and 9-node

14]

shell elements™. In the subsequent examples,

the geometric and physical properties as well
as the control parameters of each problem are

given in the corresponding Figures.
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3.1 Star-Shaped Shallow Dome Truss

Figure 2 shows a hinged shallow dome truss
subjected to a vertical point load(P=f p) at
the apex and composed of thirty truss
members. Here, f and p are the load incremen-
tal factor and the reference load (=50),
respectively. This dome has been analysed by
various authors"*"* to trace the post-buckling
load-deflection path for

conditions since it is a highly non-linear

various loading

problem with multiple limit points.

)
T MITER = 10
TOLER = 0.}

DETOL =0.3
TLOAD = .0
I p 5 1 TDISP = 0.2

AVAVAVARN
JAVAVAN

13

L g

17

5 6
E=30%0
14 13 16 A4=0)

Fig. 2 Star-shaped Shallow Dome Truss under a Center
Load

In Figure 3, the analyzed results of the load
versus the displacements of joint 1 are

compared with those of Bellini and Chulya®
using a arc-length algorithm. The two results

appear to be in complete agreement. Also, the

limit loads obtained vy this study and Kwok et

al"™ are displayed in Table 1. This shows that
the results of this study agree well with those
of Kwok et al. using model trust region
quasi-Newton and tunnelling method. The
post-buckling load-displacement paths of joint

7 are presented in Figure 4.
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Fig. 3 Load - Vertical Displacement Curves of Joint 1

Table 1. Limit Loads of Shallow Dome Truss

Limit Loads Kwok et al.l% This Study
(10° P/EA) (10° P/EA)
Third Limit Load 2297.55 2299.73
Fourth Limit Load -1906.60 -1905.00
Fifth Limit Load 1887.40 1903.37
Sixth Limit Load 2297.65 -2299.22

3.2 Hexagonal Space Frame

This problem consists of a three dimensional
frame composed of twelve members, with half
of them laid out as an hexagon, and the other
half making up the diagonals of the hexagon.
The load is applied vertically on the central
node. Each member of the frame is modeled by
two degenerate beam elements'’.

The evolution of the deflection of the apex,
while the load is varied, is given in Figure 6.
This represents the typical non-linear behavior
with two load limit points. Also, Figure 6
shows that the results of this study agree well
with those of Papadrakakis® using the two

vector iteration methods.
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(a) Load - Vertical Displacement Curve
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=200
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(b) Load - Horizontal Displacement Curve

Fig. 4 Load - Displacement Curve of Joint 7

—2

JAVEN
VAV

P

=T

b=t
=

MITER = 20
TOLER = 0.1
DETOL = 0.4
NTARG =2

E = 4398, G=159.0, f~=12

I = Iy = 00203, A=0494, J=0.0331

Fig. 5 Hexagonal Space Frame under a Center Load



200

— Present
4 Papadrakakis

160+

1201

LOAD FACTOR

401

DISPLACEMENT

Fig. 6 Load - Vertical Displacement Curves at Apex

3.3 Hinged Right-Angled Frame

Figure 7 shows a hinged right-angled frame
subjected to a force(P=f p) at the distance L
from the left hinge. Here, f and p are the load
incremental factor and the reference load,
respectively. The frame is modeled using
twenty Hermitian beam elements and analyzed
using the constant length scheme of the load and
the displacement increment(see equation (11)
and (13)).

Figure 8 displays the analyzed results of the
load parameter versus the horizontal(D,) and

e — > X
w t m
|
MITER = 10
o TOLER = 1.0
37 h
= M t B L DETOL = 0.3
y ‘ b TLOAD = 0.04
TDISP = 0.003
B A
081 | Em72%10 v =03, f=12
&> b=3.0, h=20, L=I120
L o ;
> P=fp, p= EI/L= 1000.0

Fig. 7 Hinged Right-Angled Frame under a Point Load
atx =1L
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501
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401

LOAD FACTOR

-10

DISPLACEMENT

Fig. 8 Load-Displacement Curves of Point m

vertical displacements(D,) at the point m.
This shows that the frame buckles to the clock-
wise at the upper limit load f,=13.8, which is

in good agreement with the analytic buckling
load of Kouhia and Mikkola'" ( f,,=13.9).

3.4 Hinged Cylindrical Shell

This is an example to study the geometri-
cally non-linear behavior of a shallow cylindri-

MITER = 10
TOLER = 0.01
DETOL = 0.4
NTARG = 3

E=3101, v=03. f;=12

L =508, t=127, R=2540, 6 = 0.2 rad

Fig. 8 Hinged Cylindrical Shell Under a Center Load and
Uniform Compression
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cal shell under a concentrated load and the
uniform axial compression. The shell shown in
Figure 9 is hinged at the longitudinal edges
and is free along the curved boundaries. Be-
cause of the symmetry, only a quarter of the
shell is modeled using four degenerate shell
elementsiisi. To investigate the effect of axial
compression on the buckling load, the shell is
analyzed for the three cases of axial com-
pression : i. e. ¢=0, 5, 10 N/ mm.

Figure 10 displays the plots between the load
parameter and the vertical displacement at the
center of shell. These non-inear equilibrium
paths exhibit the snap-through as well as the
turning-back phenomena, with horizontal and
vertical tangents. This shows that the first
lfmit load decreases as the axial compression
increases. In the case of no axial compression,
the results of present study is compared with

15

those of Ramm'"' in Figure 10.

1000
— Present (qg=0) - Present {q=10)}
- Present (q=5) © Ramm(q=0)
5001 A

LOAD FACTOR

'

-500
0
DISPLACEMENT

Fig. 10 Load -Vertical Displacement Curves at the Center of
Shell

3.5 Hinged Shallow Circular Arch

Figure 11 shows a schematic representation

of a hinged circular arch subjected to a eccen-

40

tric point load. The arch is modeled by eleven

Hermitian beam elements.

MITER = 10
y TOLER = 0.1 (L =200
DETOL = 0.3 P 4= 100"
T TLOAD = 10.0 ( 200 1 =10%0"
TDISP = 1.0

le 5000 ~le 5000

Fig. 11 Hinged Shallow Chricular Arch under a Eccentric Load
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(b) Load - Horizontal Displacement Curve

Fig. 12 Load-Displacement Curves of Pont A



In Figure 12, the results obtained by the
present study are compared to those by Clarke
and Hancock!"' with the load-displacement
curve of the point A. This shows that the
results of the present study agree well with
those of Clarke and Hancock. Resultantly, it is
judged that the present load/displacement in-
cremental method can trace the full equilib-
rium path of the arch which has four

snap-through and two turning-back regions.

4. CONCLUSIONS

The improved automatic combination algor-
ithm of the load and displacement method for
the geometrically non-linear analysis has been
presented. Post-buckling behaviors of the plane
and space frames, arches, and shell structures
have been analyzed using the space truss
element, the space Hermitian frame element,
and the degenerate beam and shell elements.
Through numerical examples focused on the
post-buckling analyses of slender structures, fi-
nite element solutions are compared with
various researcher’s results. Resultantly, it is
judged that the proposed load/displacement
incremental algorithm can accurately trace the
entire postbuckling equilibrium path of the
slender structures with multiple limit points,

efficiently.
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