• Title/Summary/Keyword: 하부압입

Search Result 14, Processing Time 0.022 seconds

Experimental Study on the Infilling Characteristics of CFT Column Infilled by Pumping-Up Below (하부압입공법에 의한 콘크리트 충전강관(CFT)기둥의 충전특성에 관한 실험적 연구)

  • Kim, Myoung Mo;Jeon, Sang Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.2
    • /
    • pp.375-383
    • /
    • 2002
  • To evaluate the applicability of the construction method involving infilling CFT columns by pumping-up, a trial construction was done using 6 actual size test samples. The 12.8m-high test samples were similar to a four-story building scale. The pumping-up level was controlled at 12m. The test used two types of high performance concrete with $450kgf/cm^2$ standard design strength, and a concrete pump which is used domestically. The pressure changes in pipes or pump as well as the changes in concrete characteristics were measured during construction. in order to evaluate applicability. After the concrete hardened, the column was dismantled. The filled state of the concrete, concrete strength distribution according to column height, etc., were checked to evaluate the quality of the concrete, From the results, some basic data which characterize the pumping-up pressure were suggested. Also, the strength of hardened concrete as well as the filled state were proven to be acceptable ranges.

Numerical Approach Technique of Spherical Indentation for Material Property Evaluation of Hyper-elastic Rubber (초탄성 고무 물성평가를 위한 구형 압입시험의 수치접근법)

  • Lee, Hyung-Yil;Lee, Jin-Haeng;Kim, Dong-Wook
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.23-35
    • /
    • 2004
  • In this work, effects of hyper-elastic rubber material properties on the indentation load-deflection curve and subindenter deformation are first examined via finite element (FE) analyses. An optimal data acquisition spot is selected, which features maximum strain energy density and negligible frictional effect. We then contrive two normalized functions, which map an indentation load vs. deflection curve into a strain energy density vs. first invariant curve. From the strain energy density vs. first invariant curve, we can extract the rubber material properties. This new spherical indentation approach produces the rubber material properties in a manner more effective than the common uniaxial tensile/compression tests. The indentation approach successfully measures the rubber material properties and the corresponding nominal stress-strain curve.

Analysis of Cracking Characteristics with Indenter Geometry Using Cohesive Zone Model (Cohesive Zone Model을 이용한 압입자 형상에 따른 균열특성분석)

  • Hyun, Hong Chul;Lee, Jin Haeng;Lee, Hyungyil;Kim, Dae Hyun;Hahn, Jun Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1453-1463
    • /
    • 2013
  • In this study, we investigated the effect of the indenter geometry on the crack characteristics by indentation cracking test and FEA. We conducted various cohesive finite element simulations based on the findings of Lee et al. (2012), who examined the effect of cohesive model parameters on crack size and formulated conditions for crack initiation and propagation. First, we verified the FE model through comparisons with experimental results that were obtained from Berkovich and Vickers indentations. We observed whether nonsymmetrical cracks formed beneath the surface during Berkovich indentation via FEA. Finally, we examined the relation between the crack size and the number of cracks. Based on this relation and the effect of the indenter angle on the crack size, we can predict from the crack size obtained with an indenter of one shape (such as Berkovich or Vickers) the crack size for an indenter of different shape.

A Study on Surface Settlement Prediction Method of Trenchless Technology Pipe Jacking Method (비개착 강관압입공법의 지표침하 예측방법 연구)

  • Chung, Jeeseung;Lee, Gyuyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.11
    • /
    • pp.29-37
    • /
    • 2015
  • Non-excavation method is needed to secure the stability of existing structures during construction. Therefore, prediction of ground settlement is essential. Causes of settlement when using steel pipe indentation method are leading pipe-steel pipe gap, excessive excavation and soil-steel pipe friction etc. Also they are similar to the causes of settlement when using Shield TBM during construction. In this study, ground settlement during steel pipe indentation is predicted by the Gap Parameter Method and Volume Loss Method which are kinds of Shield TBM prediction Method. and compared with those of prediction methods by conducting field test. As a result, Volume Loss Prediction Method is the most similar to the field tests. However, It is needed to additional studies, such as decision of the factors and adaptability for total settlement predictions of non-excavation method.

Nano-Indenter 측정 중 Indenting 깊이에 따른 박막의 표면 및 기판 효과에 의한 ZrN 박막의 특성연구

  • Hyeon, Jeong-Min;Kim, Su-In;Lee, Jae-Hun;Kim, Hong-Gi;Sim, Ji-Yong;Mun, Su-Yeong;Yun, Cho-Rong;Lee, Chang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.177.2-177.2
    • /
    • 2015
  • Nano-mechanics 연구는 기판의 나노표면에 대하여 indenter tip을 직접 인가하여 측정함으로써 기존 분광학 연구에서는 불가능했던 박막의 기계적 특성 연구가 가능하다. 그러나 박막분석 특성상 박막의 표면, 기판 또는 하부 박막에 의한 영향으로 인해 박막의 고유한 물성특성 연구에 제약이 있다. 박막 표면에 의한 영향인 표면효과는 nano-indentation을 실행 할 때 tip의 압입으로 발생되는 표면의 스트레스로 인해 표면 변형이 나타나는 현상이다. 반면에 하부 박막과 기판에 의한 오류는 nano-indentation 실행 시 tip의 압입 깊이가 깊어질수록 하부박막 또는 기판과 가까워지기 때문에 박막 고유의 특성이 아닌 하부박막과 기판에 의한 영향이 같이 나타나는 현상이다. 이러한 오류를 최소화 하고자 많은 연구에서는 박막의 강도에 따라 nano-indentation의 실행 깊이를 박막 총 두께의 최소7%에서 최대 50%까지 삽입하는 방법을 도입하였다. 이를 기반으로 본 연구는 Zirconium nitride (ZrN) 박막의 증착된 두께 깊이만큼 nano-indentation 분석을 실행 하였으며 박막 고유의 nano-mechanics 특성을 연구 하였다. ZrN 박막은 hard coating 분야에 많이 사용되는 물질로 박막 고유의 hardness를 연구하는 것이 큰 의미가 있다. 연구 결과 모든 박막은 두께 30% 깊이 측정에서 박막 표면과 기판효과가 최소화된 박막의 물성 측정이 가능 하였고, 증착 시 질소를 0.5, 1, 2 sccm 흘려준 박막들은 총 두께 30% 깊이에서 hardness가 각각 23.2, 8.6, 18 GPa이었다. 따라서 nano-indenter 측정 시 유효한 측정 깊이에서 측정을 실시하는 것이, 박막의 물성분석에 있어서 대단히 중요함을 확인 하였다.

  • PDF

Instrumented Indentation Technique: New Nondestructive Measurement Technique for Flow Stress-Strain and Residual Stress of Metallic Materials (계장화 압입시험: 금속재료의 유동 응력-변형률과 잔류응력 평가를 위한 신 비파괴 측정 기술)

  • Lee, Kyung-Woo;Choi, Min-Jae;Kim, Ju-Young;Kim, Kwang-Ho;Kwon, Dong-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.306-314
    • /
    • 2006
  • Instrumented indentation technique is a new way to evaluate nondestructive such mechanical properties as flow properties, residual stress and fracture toughness by analyzing indentation load-depth curves. This study evaluated quantitatively the flow properties of steels and residual stress of weldments. First, flow properties can be evaluated by defining a representative stress and strain from analysis of deformation behavior beneath the rigid spherical indenter and the parameters obtained from instrumented indentation tests. For estimating residual stress, the deviatoric-stress part of the residual stress affects the indentation load-depth curve, so that by analyzing the difference between the residual-stress-induced indentation curve and residual-stress-free curve, the quantitative residual stress of the target region can be evaluated. The algorithm for flow property evaluation was verified by comparison with uniaxial tensile test and the residual stress evaluation model was compared to mechanical cutting and ED-XRD results.

A study on development of secondary impression apparatus P.B.D Leader (P.B.D Leader 보조압입 장치 개발에 관한 연구)

  • Lee, Jeong-Hwan;Oh, Seong-Hun;Lee, Jang-Chun;Na, Seung-Kuk
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.611-613
    • /
    • 2011
  • 본 논문에서는 P.B.D 장비의 리더 하부에 연결 할 수 있는 보조 압입 장치를 개발하였다. 이를 통해 기존의 타설 보다 강한 힘으로 플라스틱 보드를 삽입 할 수 있게 되어 작업의 질적인 향상과 작업 시간을 단축 하였으며 와이어의 절단을 미연에 방지 할 수 있게 되었다. 또한 와이어의 수명을 연장시켜 경제적인 효과를 가져올 수 있었다.

  • PDF

Estimation of Effect for Vibration and Displacement Occurred by Steel Tube Jacked under Railroad (철로하부의 강관압입 시 발생되는 지반변위 및 진동에 대한 영향평가)

  • 박승욱;김홍기;박해일
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.568-577
    • /
    • 2001
  • An important and cotinuing research effort has been concentrated to estimate safety for behavior of soil nearby construction site. This construction under ground would cause the soil to deform and vibrate at any direction. This paper presents to estimation of safety for movement and reliability for vibration due to steel tube jacked under ground.

  • PDF

A Study on Utilizing Instrumented Indentation Technique for Evaluating In-field Integrity of Nuclear Structures (원전 구조물의 가동 중 건전성 평가를 위한 연속압입시험법의 활용에 관한 연구)

  • Song, Won-Seok;Kim, Seung-Gyu;Ahn, Hee-Jun;Kim, Kwang-Ho;Kwon, Dongil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.165-172
    • /
    • 2013
  • Power generating unit structures are designed and built to meet standard to secure its safety for expected life time. As the structures have been exposed to combined environment, degradation of structure material is accelerated and it can cause unexpected damage; evaluating precise mechanical properties of weak site like welded area is an essential research area as it is directly connected to safety issues. Existing measuring technique like tensile test requires specific size in testing specimen yet it is destructive method which is hard to apply on running structures. To overcome above mentioned limitation, IIT is getting limelight as it is non-destructive and simple method. In this study, latest technique is introduced to evaluate tensile property and residual stress by analyzing stress field occurs under the indenter while IIT is performed. Test on welded area, the weak site of nuclear structures have been practiced and confirmed that IIT can be usefully applied to evaluate integrity in industry.

Damage Analysis of Singly Oriented Ply Fiber Metal Laminate under Concentrated Loading Conditions by Using Acoustic Emission (음향 방출법을 이용한 집중하중을 받는 일방향 섬유 금속 적층판의 손상 해석)

  • 남현욱;김용환;한경섭
    • Composites Research
    • /
    • v.14 no.5
    • /
    • pp.46-53
    • /
    • 2001
  • In this research, damage behavior of singly oriented ply (SOP) fiber metal laminate (FML) subjected to concentrated load was studied. The static indentation tests were conducted to study fiber orientation effect on damage behavior of FML. During the static indentation tests, acoustic emission technique (AE) was adopted to study damage characteristics of FML. AE signals were obtained by using AE sensor with 150kHz resonance frequency and the signals were compared with indentation curves of FML. The damage process of SOP FML was divided by three parts, i.e., crack initiation, crack propagation, and penetration. The AE characteristics during crack initiation show that the micro crack is initiated at lower ply of the plate, then propagate along the thickness of the plate with creating tiber debonding. The crack grow along the fiber direction with occurring 60∼80dB AE signal. During the penetration, the fiber breakage was observed. As fiber orientation increases, talc fiber breakage occurs more frequently. The AE signal behaviors support these results. Cumulative AE counts could well predict crack initiation and crack propagation and AE amplitude were useful for the prediction of damage failure mode.

  • PDF