공간 필터링 신경회로망을 이용한 필기체 문자 인식의 특징 추출 방법을 제안한다. 필기체 문자의 특징 추출을 위한 신경망은 먼저, 불규칙한 화소를 제거하는 전처리를 수행한다. 그 후, 윤곽선 검출 및 제거를 통해 외곽선 정보들을 소거한다. 그리고 문자의 특징에 해당하는 정보를 추출한 후 잡음을 제거한다. 제안된 시스템은 시각영역에서 나타나는 여러 가지 세포들의 수용 영역에 대응하는 공간 필터를 활용한 것이다. 제안된 시스템의 타당성을 확인하기 위한 실험은 PE2 데이터를 사용하였다. 실험을 통해 공간필터링 신경회로망을 이용한 필기체 문자의 특징 추출 시스템은 곡선이나 원, 사각형이 포함된 형태의 필기 문자에서도 특징 추출이 용이하다는 것을 확인할 수 있다.
본 논문은 런 길이를 이용해 필기체 한글 문자에서 자획의 교점을 검출하는 새로운 방법을 제안한다 이를 위해 첫째로, 수평 런 길이와 수직 런 길이를 이용해 필기체 한글 문자의 자획 두께를 구하고, 둘째로, 자획 두께를 이용해 입력 문자의 자소를 수평 성분과 수직 성분으로 분리하며, 마지막으로, 자획의 수평 성분과 수직 성분을 이용해 자획의 교점을 구하는 기술을 제안한다. 수평 성분과 수직 성분 분석은 각도와 관계없이 자획 두께와 런 길이의 변화량만을 이용해 구한다. 자획의 교점은 오프라인 필기체 한글 인식을 위한 요소 기술 중 하나인 자소 분리를 위한 분리점 후보가 되며 분리된 자획은 필기체 한글 인식을 위한 특징을 나타낸다.
개별적인 인식기를 하나의 단일 인식 시스템으로 구성하여 음성과 문자를 인식할 수 있는 공용인식시스템의 성능향상을 위해 온라인 필기에서 전역적인 정보를 추출할 수 있는 비트맵 파라미터 추출 방법을 제안하였다. 제안된 방식에서는 고속의 파라미터 추출을 위해 보간법을 이용한 재샘플링 과정 대신에 새로운 시간열을 구성하는 방식을 이용한다. 제안한 비트맵 파라미터를 본 연구실에서 개발한 음성/문자 공용인식 시스템에 적용하기 위하여 67개의 자소를 5상태 10천이 CHMM(Continuous Hidden Markov Model)모델로 구성한 다음 인식알고리즘으로서는 상태단위로 지속 시간 정보를 제어하는 OnePassDP법을 이용하였다. 실험결과, 제안한 방법을 이용한 경우, 자소인식률은 61.3%에서 85.3%로 24%의 인식률 향상을 가져왔으며, 글자인식률은 64.3%에서 82.2%로 17.9%의 인식률 향상을 가져와 제안한 방법의 유효성을 확인할 수 있었다.
본 논문에서는 오프라인 필기체 숫자의 변형을 흡수할 수 있는 효과적인 특징을 찾기 위해서 여러 가지 특징의 성능을 비교하였다. 실험적인 성능 비교 결과는 윤곽 선을 이용한 4방향성 특징 그리고 교차 거리+교차+망+투영 특징이 오프라인 필기체 숫자 인식에서 인식률과 인식 시간측면에서 효과적인 것으로 나타났다. 그리고 단일 신경회로망에서 인식률의 한계점을 극복하기 위하여 효과적인 특징을 조합한 복합특징 으로 다수결투표와 신뢰도 지수를 이용한 모듈화된 신경회로망을 제안한다. 제안된 방식의 성능을 검증하기 위해서 캐나다의 Concordia 대학교와 한국의 Dong-A 대학교 오프라인 필기체 숫자 데이터베이스에 대하여 실험을 하였다. Concordia 대학교의 데이터 베이스는 97.1%의 정인식률, 1.5%의 기각률, 1.4%의 오인식률 그리고 98.5%의 신뢰도가 나타났으며, Dong-A 대학 교의 데이터 베이스는 98%의 정인식률, 1.2%의 기각률, 0.8%의 오인식률 그리고 99.1%의 신뢰도가 나타났다.
본 논문은 퍼지추론을 이용하여 신경회로망의 필기체 숫자 인식 개선 방법을 제안하였고 실험을 통하여 확인하였다. 신경회로망은 학습 시간이 오래 걸리고, 학습한 패턴에서는 100% 인식률을 보였다. 그러나 신경회로망은 시험 패턴에서는 좋은 결과를 보여주지 못했다. 실험결과 신경회로망의 인식률과 오인식률이 각각 초기 89.6%, 10.4%에서 90.2%, 9.8%로 각각 향상되었다. 특히, 숫자 3과 5에서 오인식률을 크게 감소시켰다. 실험에서 퍼지 소속 함수의 추출을 숫자의 밀도로 사용하였으나 필기체 숫자는 입력 패턴이 다양하기 때문에 다양한 특성을 추출하고 복합적으로 퍼지 추론을 사용해 더 나은 인식률을 높여야 한다. 또한 퍼지추론을 엄격하게 적용하기보다는 입력 패턴을 매칭 할 때 퍼지 추론을 적용하는 것을 제안한다.
최근의 인식 시스템 연구들에 의하면 SVM 분류기가 여러 다른 분류기에 비해 우수한 인식 성능을 나타내고 있다. 이에 본 논문에서는 SVM 분류기를 사용하여 필기체 숫자를 인식하는 알고리즘을 제시한다. 본 기법에서는 필기체 숫자의 특징으로서 망특징과 Kirsch 연산자에 의한 방향 특징 및 오목특징을 사용하는데, 이중에서 처음 두 특징은 숫자를 이루는 선에 대한 전경 정보를 표현하며, 마지막 특징은 숫자의 배경 정보를 표현하여 상호 보완적인 역학을 수행한다. 본질적으로 SVM은 두 클래스 분류기이므로 이를 다중 클래스 분류기로 사용하기 위해서는 여러 개의 SVM들을 결합하여 사용해야 하는데, 본 논문에서는 "일대일" 방법과 "일대다" 방법을 사용하여 주어진 특징에 대한 인식을 수행하였다. 제시된 기법의 성능 평가를 위해 CENPARMI 필기체 숫자 데이터베이스를 사용하여 실험하였으며, 그 결과 98.45%의 인식률을 얻을 수 있었다.
필기구는 그 구조와 사용특성상 여타 제품과는 다른 특징을 많이 띠는 제품이다. 즉, 다양한 종류의 필기구라 할지라도 대체로 공통적인 구조나 부품으로 구성된 경우가 많다. 또한 제품 전체가 항상 손에 잡혀져 필기가 이루어진다는 점에서 인체공학적인 디자인이 필수적인 제품이다. 소비자들이 필기구를 고르는 데 있어 가장 중요하게 여기는 요소가 필기감이라는 것을 감안하면, 스타일링 위주의 디자인을 행하기 보다 필기감 향상에 영향을 주는 요소 중에서도 디자인이 기여할 수 있는 인간공학적인 개선이 매우 유효한 개선 방법이 된다고 할 수 있다. 현재까지도 인간과 일의 이해를 바탕으로한 인간공학 (Ergonomics)적 접근이나 필기구를 쥐었을 때의 편안함 등에 대한 문제해결은 부족한 면이 적지 않으며, 인간과 일의 관계에 의해 인간사회는 유지되며 독특한 문화를 형성한다는 근본적인 인식을 바탕으로 필기구 디자인은 문화적인 차원에서의 인간공학적 접근을 시도해야 한다. 이에 본 연구에서는 다양한 필기구의 인간공학적 디자인 크라이테리어를 재정립하고, 실제 실험을 통하여 필기구가 가져야하는 기본적인 제원에 대하여 정리하여 향후 필기구 개발에 기초자료로 쓰기 위한 시도를 하였다. 이러한 연구는 필기구 개발의 통합적 전개, 즉 동시공학적 개발을 위한 기초자료로서 나 각 부품별 모듈 시스템을 통한 모델 다각화 전략의 초석이 되는 데이터베이스 개발에도 효과적으로 응용될 수 있다.
전처리된 필기체 숫자 패턴을 3차원 공간에 투영시키고 2차원 평면에 추가되는 z축은 숫자 획의 궤적을 따라가는 순서 인덱스를 나타낸다. 추출된 특징점들간의 거리를 구하고 이 거리 데이터를 정규화 시켜 크기 변화에 적응하고, 정규화된 특정간 거리정보의 통계적 히스토그램을 구하여 인식처리의 입력으로 하였다. 실험에서 200개의 필기체 숫자 패턴 중 100개를 사용하여 특징맵 평균치를 구하여 기준값 특징맵을 구성하였고, 나머지 100개는 인식 실험의 입력패턴으로 사용하였다. 실험결과 임계치 0.20에서 93.5% 인식률, 임계치 0.25에서 97.5%의 인식률을 보였다.
필기체 오프라인 문자 인식을 위한 특징 추출의 새로군 접근 방법으로, 인간의 시각 신경계의 반응모델에 근거한 특징 추출 방법을 제안한다. 필기체 문자의 특징 추출을 위한 신경망은 평활화 처리, 외곽선 제거, 특징 정보 추출의 3가지 단계로 나누어진다. 필기체 문자에서 발생하기 쉬운 매끄럽지 못한 화소들을 전처리 단계인 평활화 처리를 통해 제거한다. 다음 단계로 인식에 영향을 주지 않는 외곽선 정보를 추출하여 이를 제거한다. 그리고 마지막으로 문자 특징에 해당하는 정보를 추출한다. 제안된 특징 추출 시스템의 타당성을 확인하기 위한 실험은 필기체 오프라인 문자인 PE2 데이터를 사용하였다. 실험을 통해 시각 신경계 반응모델에 근거한 필기체 문자의 특징을 추출하는 시스템은 곡선이나 원, 사각형이 포함된 형태의 필기 문자에서도 특징 추출이 용이하다는 것을 확인할 수 있다.
본 논문에서는 보다 실용적인 온라인 한자인식기 개발을 위하여 한자 검정 능력 1급 쓰기 수준을 모두 포함하는 한자 필기 데이터로부터 16방향의 체인코드열과 부분획의 구조를 반영하는 구조코드열을 만들어 성능평가를 하였다. 인식 방법으로는 DP 매칭 방법과 HMM을 사용하여 2,362 종류의 한자에 대해 인식 실험을 하였다. 그 결과 체인코드열을 사용한 DP 매칭 방법에 의한 결과가 96.54%로 가장 높은 인식률을 보였으며, 구조코드열을 사용하여 HMM에 의한 인식실험 결과가 95.65%로 그 뒤를 이었다. 인식 속도면에서는 체인코드 보다 코드열의 길이가 짧은 구조코드열을 사용한 방법이 상대적으로 유리했고, 클래스 당 1개의 모델을 사용한 HMM에 의한 방법이 클래스 당 복수개의 모델을 사용한 DP 매칭 방법에 비해 모델의 개수가 훨씬 적기 때문에 속도 면에서 월등히 유리해 더 효율적인 인식 성능을 보인다는 결론을 내릴 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.