• Title/Summary/Keyword: 피타고라스의 정리

Search Result 49, Processing Time 0.021 seconds

Convergence characteristics of Pythagorean winning percentage in baseball (야구 피타고라스 승률의 수렴특성)

  • Lee, Jangtaek
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.6
    • /
    • pp.1477-1485
    • /
    • 2016
  • The Pythagorean theorem for baseball based on the number of runs they scored and allowed has been noted that in many baseball leagues a good predictor of a team's end of season won-loss percentage. We study the convergence characteristics of the Pythagorean expectation formula during the baseball game season. The three way ANOVA based on main effects for year, rank, and baseball processing rate is conducted on the basis of using the historical data of Korean professional baseball clubs from season 2005 to 2014. We perform a regression analysis in order to predict the difference in winning percentage between teams. In conclusion, a difference in winning percentage is mainly associated with the ranking of teams and baseball processing rate.

Teaching of the Meaning of Proof Using Historic-genetic Approach - based on Pythagorean Theorem - (역사.발생적 전개를 따른 증명의 의미 지도 - 피타고라스 정리를 중심으로 -)

  • Song, Yeong-Moo;Lee, Bo-Bae
    • School Mathematics
    • /
    • v.10 no.4
    • /
    • pp.625-648
    • /
    • 2008
  • We collected the data through the following process. 36 third-grade middle school students are selected, and we conducted ex-ante interviews for researching how they understand the nature of proof. Based on the results of survey, then we chose two students we took a lesson with the Branford's among the 36 samples. After sampling, historic-genetic geometry education, inspected carefully whether the Branford's method helps the students.

  • PDF

Global Venture-11억이 달리는 인도

  • Korea Venture Business Association
    • Venture DIGEST
    • /
    • s.119
    • /
    • pp.44-45
    • /
    • 2008
  • 참으로 다양한 것들이 존재 하는 나라. 아시아 속에서 또 하나의 독특한 문화를 가진 독립적인 대륙, 인도. 11억 인구의 거대 시장과 풍부한 자원을 보유한 인도는 엄청난 성장 잠재력을 보유한 나라로 손꼽힌다. 0의 개념, 십진법, 원주율, 피타고라스 정리, 지구의 태양 공전 주기, 체스까지 흥미로운 세계 최초를 만들어낸 기초학문의 강국 인도는 이제 선택이 아닌 필수교류 국가로 우리 앞으로 달려오고있다.

  • PDF

GSP를 활용한 중학교 수학 교과 연구 -피타고라스 정리를 중심으로-

  • 계영희
    • Journal for History of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.121-132
    • /
    • 2000
  • In this paper, we demonstrate the Pythagorean Theorem by using the computer geometric software, Geometer's Skechpad(GSP) in stead of Eucliean logical proof. Also, we show that two applications of Pythagorean Theorem. The one is constructed by the fact that $ka^2+kb^2=kc^2$, where k is a constant, the other is made by the fractal.

  • PDF

피타고라스 정리의 효과적인 지도 방안에 관한 CAI 제작 및 적용을 통한 학습의 효과에 관한 연구

  • 박대우;윤주한
    • The Mathematical Education
    • /
    • v.36 no.1
    • /
    • pp.61-75
    • /
    • 1997
  • 컴퓨터가 우리 생활에 일반적인 것이 된 시기는 그리 오래되지 않았다. 80년대 초 8bit 컴퓨터가 16bit로 대치되기 시작하면서 많은 분야에 걸쳐 다양하게 사용되어 오고 있다. 이러한 컴퓨터의 보급은 교육계에서도 마찬가지로 어떻게 하면 컴퓨터를 교수 학습에 효과적으로 사용할 수 있는가에 대한 여러 가지 방법이 논의되어 왔다.(중략)

  • PDF

An Inquiry into Convex Polygons which can be made by Seven Pieces of Square Seven-piece Puzzles (정사각형 칠교판의 일곱 조각으로 만들 수 있는 볼록 다각형의 탐색)

  • Park, Kyo-Sik
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.3
    • /
    • pp.221-232
    • /
    • 2007
  • In school mathematics, activities to make particular convex polygons by attaching edgewise some pieces of tangram are introduced. This paper focus on deepening these activities. In this paper, by using Pick's Theorem and 和 草's method, all the convex polygons by attaching edgewise seven pieces of tangram, Sei Shonagon(淸少納言)'s tangram, and Pythagoras puzzle are found out respectively. By using Pick's Theorem to the square seven-piece puzzles satisfying conditions of the length of edge, it is showed that the number of convex polygons by attaching edgewise seven pieces of them can not exceed 20. And same result is obtained by generalizing 和 草's method. The number of convex polygons by attaching edgewise seven pieces of tangram, Sei Shonagon's tangram, and Pythagoras puzzle are 13, 16, and 12 respectively.

  • PDF