• Title/Summary/Keyword: 피부변형

Search Result 83, Processing Time 0.028 seconds

Computing Fast Secondary Skin Deformation of a 3D Character using GPU (GPU를 이용한 3차원 캐릭터의 빠른 2차 피부 변형 계산)

  • Kim, Jong-Hyuk;Choi, Jung-Ju
    • Journal of the Korea Computer Graphics Society
    • /
    • v.18 no.2
    • /
    • pp.55-62
    • /
    • 2012
  • This paper presents a new method to represent the secondary deformation effect using simple mass-spring simulation on the vertex shader of the GPU. For each skin vertex of a 3D character, a zero-length spring is connected to a virtual vertex that is to be rendered. When a skin vertex changes its position and velocity according to the character motion, the position of the corresponding virtual vertex is computed by mass-spring simulation in parallel on the GPU. The proposed method represents the secondary deformation effect very fast that shows the material property of a character skin during the animation. Applying the proposed technique dynamically can represent squash-and-stretch and follow-through effects which have been frequently shown in the traditional 2D animation, within a very small amount of additional computation. The proposed method is applicable to represent elastic skin deformation of a virtual character in an interactive animation environment such as games.

Prestrain-induced Reduction in Skin Tissue Puncture Force of Microneedle (초기변형률에 의한 미소바늘의 피부조직 관통력 감소)

  • Kim, Jonghun;Park, Sungmin;Nam, Gyungmok;Yoon, Sang-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.10
    • /
    • pp.851-856
    • /
    • 2016
  • Despite all the recent advances in biodegradable material-based microneedles, the bending and failure (especially buckling) of a biodegradable microneedle during skin tissue insertion remains a major technical hurdle for its large-scale commercialization. A reduction in skin tissue puncture force during microneedle insertion remains an essential issue in successfully developing a biodegradable microneedle. Here, we consider uniaxial and equibiaxial prestrains applied to a skin tissue as mechanophysical stimuli that can reduce the skin tissue puncture force, and investigate the effect of prestrain on the changes in skin tissue puncture force. For a porcine skin tissue similar to that of humans, the skin tissue puncture force of a flat-end microneedle is measured with a z-axis stage equipped with a load cell, which provides a force-time curve during microneedle insertion. The findings of this study lead to a quantitative characterization of the relationship between prestrain and the skin tissue puncture force.

Real-time Human Body Deformation based on Rotation Angle Interpolation (회전각 보간에 기반한 실시간 인체 변형)

  • 신승협;신성용
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.625-627
    • /
    • 2000
  • 최근 실시간 가상 인물 애니메이션 시스템이 활발하게 보급되면서 피부모양을 자연스럽게 유지하면서도 고속으로 동작할 수 있는 인체 변형 방법이 요구되고 있다. 본 논문은 가상 인물을 구성하는 메쉬의 정점들을 회전 연산만으로 이동시켜 실시간에 인체를 변형하는 모델을 제안한다. 인체 변형의 처리과정으로 드로니 삼각화를 이용하여 각 정점의 회전 기준이 될 관절을 찾는 방법을 제시하고, 사원수 형태로 입력된 동작을 회전축의 방향에 따라 분해한 후 각 정점에 차등적으로 적용하여 피부를 자연스럽게 변형할 수 있음을 보인다.

  • PDF

Recent Research Trend in Soft Tactile Sensor for Electronic Skin (전자피부(E-Skin)용 유연 촉각센서 연구동향)

  • Jee, Eunsong;Kim, Joo Sung;Kim, Do Hwan
    • Prospectives of Industrial Chemistry
    • /
    • v.21 no.1
    • /
    • pp.3-18
    • /
    • 2018
  • 전자피부(Electronic skin)는 외부 환경과의 상호작용하는 인간 피부의 기능을 대체하여 외부 자극 신호를 전기적 신호로 변환하는 센서들로 이루어진 인공피부로써, 최근 인간과 전자기기 간의 인터페이스에 대한 관심이 급증하면서 이에 대한 많은 연구들이 진행되고 있다. 그중에서도 피부의 주된 기능인 외부 물리적 자극을 인지하는 촉각을 모방하는 촉각센서는 많은 발전을 거쳐 왔으며, 한계를 극복하고자 다양한 연구들이 진행되고 있다. 촉각센서는 압력, 인장, 굽힘과 같은 물리적 자극에 반응하며, 물리적 자극 신호를 아날로그 및 디지털 신호로 변환하여 인지하는 연구들이 폭넓게 개발되고 있다. 또한, 소자의 구조에 따라 물리적 자극을 전달하는 다양한 변환 방식들이 있으며, 최근에는 각 신호 변환 방식의 민감도, 반응속도, 자극 인지 범위 등의 한계점을 극복하고, 소재의 기계적 물성을 향상시키기 위해 소재의 변형을 주거나 생체의 기관 구조 및 외부 자극 인지 원리 등을 모사한 연구들이 많은 관심을 받고 있다. 본 기고에서는 이러한 촉각센서의 물리적 자극 신호 변환 방식과 소재 변형 및 생체 모사를 통한 다양한 연구들을 소개하고자 하며, 이를 통하여 촉각센서의 나아갈 방향을 제시하고자 한다.

Human Hand Deformation with Splines (스플라인을 이용한 인체 손 형상 변형)

  • Lee, Ji-Eun;Yoon, Seung-Hyun;Kim, Myung-Soo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.11 no.3
    • /
    • pp.1-9
    • /
    • 2005
  • 본 논문에서는 피부 변형 방법의 일종으로 스플라인 곡선과 곡면을 이용한 손 형상의 모델링 및 변형 기술을 소개하다. 손 형상의 골격 구조를 근사하는 스윕에 손 형상 메쉬 정점들을 바인딩 하여 관절의 변화에 따라 변형된 손 형상을 얻고, 손 자세 변형에 따라 손바닥 형상이 돌출되고 손금이 생기는 등 기존 연구에서 부족했던 손바닥 형상 변형의 사실성을 얻기 위해 손바닥 형상 변형을 제어하는 넙스 곡면을 생성하고 이용하였다. 손바닥 표면의 정 점들을 보간하여 생성된 넙스 곡면은 사실적인 손바닥 변형을 위해 소수의 보간 점들만 미리 정의된 방법으로 변경하면 되기 때문에 사용하기가 용이하다. 손금은 손바닥 곡면에 대한 차이 값으로 구현되어 손형상 자세에 부합하게 변형되며, 사람에 따라 다른 다양한 손금 형태를 지원할 수 있다. 연구 결과는 사실적인 형상 변형 결과를 보였으며, 실시간 실행이 가능하다.

  • PDF

The Modified Outside-In Technique for Meniscal Suture - Technical Note - (변형된 Outside-In 기법을 이용한 반월상 연골판 봉합술 - 수술 수기 -)

  • Lee Kee-Byoung;Kwon Duck-Joo;Lee Young-Gyun;Song Young-Joon
    • Journal of the Korean Arthroscopy Society
    • /
    • v.7 no.1
    • /
    • pp.96-99
    • /
    • 2003
  • As arthroscopy is more advanced and the importance of meniscal function is more emphasized, there have been more advanced en meniscal repair technique. However conventional technique require the use of special instruments and extensive skin incision to protect the neurovasculatures and soft tissues. Also these have the potential problem of damage in articular surfaces by the knot. So, we develop a modified outside-in technique using spinal needles and nylon loops. Our method have many advantages not only in stability but simplicity, and there is no need of additional skin incision.

  • PDF

Measurement of Surface Strain on Soft Biological Tissues Using Irregular Grid Pattern (불규칙적인 격자망을 이용한 생체 연조직의 곡면변형률 측정)

  • Lee, Jun Sik;Kim, Ki Hong;Kim, Hyung Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.1051-1057
    • /
    • 2013
  • In this study, an automatic surface-strain measurement system called "ASIAS-bio" has been developed. This system can be used even in cases in which it is very difficult to apply a regular grid pattern necessary for measuring surface-strain, such as curved or uneven surfaces; surfaces damaged by corrosion or contamination; or soft materials such as rubber, foam, and biological tissues. This system works independently of the measurement conditions including the material and its surface condition, grid pattern and size, grid marking method, and degree of deformation. A comparison between the strain distributions of the sheet metal parts measured by using this system and those obtained by a commercial system showed that this system was sufficiently reliable. In addition, the deformation of the swine joint capsule and human knee skin was measured by using this system to demonstrate its usefulness.

Muscle Deformation Model for Real-Time Skin Deformation Control (실시간 피부 변형 제어를 위한 근육 변형 모델)

  • Jin, Jung-Hwan;Kim, Jong-Hyuk;Choi, Jung-Ju
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.3
    • /
    • pp.21-30
    • /
    • 2010
  • We present a real-time simulation method for muscles which are actuated by skeletal structure based on anatomical properties of the muscles. Muscles are designed by their two endpoints attached to either bones or other muscles and their volume are preserved approximately during the deformation. Skin deformation animation is obtained by a simple skinning due to the muscle deformation. We present also the performance data for a human-like multi-linked character which has bones, muscles, and skin. According to our experimental result, we can get skin deformation animation with a few tens of muscles in real-time. The method proposed in this paper can be applied to obtain skin deformation animation for multi-linked characters appear frequently in real-time environments such as games.

Adhesive, Friction, and Deformation Behaviors of Pig Skin under Various Exposure Times to Air (돼지피부의 공기노출 시간에 따른 응착, 마찰 및 변형거동)

  • Shin, Hyunduk;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.30 no.1
    • /
    • pp.36-45
    • /
    • 2014
  • Understanding steel/skin contact phenomena is important for the study of object manipulation in robotics and has been a topic of great interest. In this study, pig skin was taken as a surrogate model for human skin, and its adhesive, friction, and deformation behaviors were measured under various exposure times to air. Indentation, friction, and scratch tests were performed at $25^{\circ}C$ and 45% relative humidity. The influences of adhesion and deformation on the coefficient of friction were characterized; the pig skin was found to be sensitive to the sliding velocity and normal load under the controlled experimental conditions.

3D Measurement of Skin Deformation for the Design of a Tight-fitting Torso Pattern (밀착형 셔츠 설계를 위한 피부변형의 3차원 측정)

  • Park, Hye-Jun;Wu, Yanjun;Hong, Kyung-Hi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.11
    • /
    • pp.1824-1835
    • /
    • 2010
  • This study develops tight-fitting torso patterns for performance garments by taking into account the skin deformation generated directly from a 3D scan during arm movements. The skin deformation caused during the arm movements was scanned after scanning the skin surface stamped with a circle. To create a torso pattern in response to skin deformation, the ratio and direction of the skin deformation were first measured and analyzed so that the 3D human body could be segmented. After translating, the 3D skin surface was segmented into 2D flat patterns, designing nude patterns and reducing them as well as tight-fitting shirts: the skin deformation segment shirts were made in response to the skin deformation. The features of the fabric deformation and the garment pressure were analyzed and evaluated. In comparison with a clothing construction segment shirt, the diameter of the skin deformation segment shirt was smaller as well the ratios of extension and reduction was less. The garment pressure of the skin deformation segment shirt was higher. The skin deformation segment shirt fitted more tightly compared to a clothing construction segment shirt as it covered the body more thoroughly and was as comfortable as the other shirts with less fabric deformation made as the body moved.