• Title/Summary/Keyword: 피로모형

Search Result 126, Processing Time 0.029 seconds

A Study Shear Behavior of Reinforced Concrete Beams Mixed Steel Fiber (강섬유(鋼纖維)를 혼입(混入)한 철근(鐵筋)콘크리트 보의 전단학동(剪斷學動)에 관(關)한 연구(硏究))

  • Kwak, Kae Hwan;Lee, Kwang Myong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.1-8
    • /
    • 1991
  • Recently the use of steel fibers has been increased in flexural members and columns of concrete structures subjected to cyclic loadings; such as bridge decks, highway roads, runway of airport, buildings, etc.. However only a few experimental tests have been carried out under fatigue loading. In the present study, the reinforced concrete beams with 1% and 2% steel fiber volume fraction are investigated with and without stirrups. It has been found that in fatigue tests, the failure of the beam is usually due to breaking of fibers rather than fiber pull-out. A comparison of experiments and numerical analysis using the nonlinear F.E.M. program (ADINA) is also presented herein.

  • PDF

Progressive Fatigue Reliability Analysis of Offshore Structures (해양구조물의 진전하는 피로파괴에 대한 신뢰도해석)

  • Ryu, Jeong Soo;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 1992
  • The primary objective of this study is the development of the system reliability analysis of offshore structures against progressive fatigue failure. Two methods based on the second moment reliability methods are used. One is the improved first order reliability method(IFORM) and the other is the modified probabilistic network evaluation technique(MPNET). Using idealized parallel member models, reliability analyses for progressive fatigue failures are carried out for various cases with multiple members composed of multiple connecting joints per member. Numerical results indicate that the effectiveness of the used methods over the conventional ones (i.e. the FORM and the PNET) increases very significantly as the number of failure modes of the system increases.

  • PDF

Effects of Job Stress, Fatigue, Burnout, and Job Satisfaction on Turnover Intention among General Hospital Nurses (종합병원 간호사들의 직무스트레스, 피로, 소진 및 직무만족도가 이직의도에 미치는 영향)

  • Lim, Yeon-Hee;Cho, Young-Chae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.264-274
    • /
    • 2018
  • This study constructed a prediction model based on covariance structure to identify the causal relationship between job stress, fatigue, burnout, and job satisfaction on turnover intention in nurses working in general hospitals. The study subjects were 648 nurses at a general hospital in D city. Data collection was surveyed by using self-administered questionnaires structured during the period from November 1, 2016 to December 31, 2016. As a result, the level of turnover intention was significantly higher in the group showing higher job stress, fatigue, and burnout and significantly higher in the group showing lower job satisfaction. The turnover intention of subjects showed a significant positive correlation with job stress, fatigue, and burnout but showed a negative correlation with job satisfaction. As a result of covariance structure analysis, job stress had greater influence on turnover intention than fatigue, burnout, and job satisfaction. Higher job stress, fatigue, and burnout and lower job satisfaction were associated with increased turnover intention. The results of this study show that the turnover intention of general hospital nurses is significantly related to job stress, fatigue, burnout, and job satisfaction. In particular, job stress had a greater effect on turnover than fatigue, burnout, and job satisfaction. Therefore, in order to lower the turnover intention of general hospital nurses, it is necessary to seek ways to mitigate job stress.

Development of ViscoElastoPlastic Continuum Damage (VEPCD) Model for Response Prediction of HMAs under Tensile Loading (인장하중을 받는 아스팔트 혼합물의 점탄소성 모형의 개발)

  • Underwood, B. Shane;Kim, Y. Richard;Seo, Youngguk;Lee, Kwang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1D
    • /
    • pp.45-55
    • /
    • 2008
  • The objective of this research was to develop a VEPCD (ViscoElastoPlastic Continuum Damage) Model which is used to predict the behavior of asphalt concrete under various loading and temperature conditions. This paper presents the VEPCD model formulated in a tension mode and its validation using four hot mix asphalt (HMA) mixtures: dense-graded HMA, SBS, CR-TB, and Terpolymer. Modelling approaches consist of two components: the ViscoElastic Continuum Damage (VECD) mechanics and the ViscoPlastic (VP) theory. The VECD model was to describe the time-dependent behavior of HMA with growing damage. The irrecoverable (whether time-dependent or independent) strain has been described by the VP model. Based on the strain decomposition principle, these two models are integrated to form the VEPCD model. For validating the VEPCD model, two types of laboratory tests were performed: 1) a constant crosshead strain rate tension test, 2) a fatigue test with randomly selected load levels and frequencies.

Fatigue analysis of pressure vessel in view of wind and seismic loads (풍력과 지진하중을 고려한 압력용기의 피로해석)

  • 박진용;황운봉;박상철;박동환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.596-603
    • /
    • 1991
  • Fatigue life prediction of pressure vessel is studied analytically using cumulative damage models and linear elastic fracture mechanics method. The stresses are analyzed by finite element method. During operation, the maximum stress occurs at the outside of neck region while fatigue analysis indicates that the bottom of nozzle part has the shortest fatigue life. Previously proposed fatigue life prediction equation and cumulative damage model are modified successfully by introducing reference fatigue modulus. It is found that the modified life prediction equation and damage model are useful for lower stress level application.

생활시간소비형태에 따른 피로도에 대한 연관성 분석

  • Choe, Jong-Hu;Lee, Dong-Hui;So, Seon-Ha
    • Proceedings of the Korean Association for Survey Research Conference
    • /
    • 2006.12a
    • /
    • pp.41-47
    • /
    • 2006
  • 통계청은 1999과 2004년 두 차례에 걸쳐 '생활시간조사(Time Use Survey)'를 실시한 바 있다. 이 조사는 우리나라 국민이 하루 24시간을 어떠한 이용 행태로 시간 사용을 하고 있는 지를 조사함으로써 오늘의 국민들의 평균적인 생활방식과 삶의 질을 파악하고, 시간자원의 효율적 활용에 필요한 기초자료를 제공하는데 그 의의를 두고 있다. 특히 생활시간조사는 각 개인의 시간별 활동내용 뿐 아니라 개인의 여러 가지 인구통계학적 특성들을 함께 조사함으로써 이와 관련된 실증적 연구를 가능하게 한다. 본 연구에서 관심을 가지고 살펴보고자 하는 것은 개인의 생활시간소비 행태는 성별 및 사회적 역할과 연관되어 있다고 생각되기 때문이다. 특히 개인의 피로도의 정도와 생활시간 소비 형태와의 관련성에 초점을 두고 로지스틱 회귀, 대응분석을 통하여 살펴보고자 한다.

  • PDF

Damage Assessment of Bridges by Overloaded Vehicles (과적차량에 의한 교량의 손상평가)

  • Bang, Myung Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.1
    • /
    • pp.81-88
    • /
    • 1998
  • 과적차량의 통행에 의한 교량구조물의 손상도를 평가하는 방법의 개발이 매우 활발하다. 본 연구에서는 과거 15년동안 통행한 교통데이타를 분석하고, 이 데이타를 근거로 교량의 손상도를 분석한다. 차량의 분류는 4종으로 대표하여 차량하중을 분석하였으며 해석시에는 이를 대표하는 2종을 사용하였다. 3차원해석을 통하여 구한 영향면을 이용하여 부재력을 계산하고 이를 이용하여 등가응력범위를 구한다. 이 결과는 모형실험을 통하여 구한 피로결과와 비교하였다. 분석결과 설계하중을 초과하는 과적차량이 교량에 미치는 손상정도는 적은 통행빈도에도 불구하고 매우 큼을 알 수 있고, 이러한 실제교통량의 분석을 통한 교량의 손상평가방법은 과적차량에 의한 교량손상정도를 유용하게 평가할 수 있다.

  • PDF

Construction of a Design Curve for Fatigue Model Using Bootstrap Method (붓스트랩방법을 이용한 피로모형의 설계곡선 설정)

  • 서순근;조유희
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.4
    • /
    • pp.106-119
    • /
    • 2002
  • The fatigue curve with estimated parameters represents the estimate of the median or mean life at a given applied stress But, in order to assist a designer in making decisions regarding the fatigue failure mode, it is common practice to construct a design curve on the lower or safe side of data. In this study, to overcome the limitations(i.e., no runout, equal variance, and quality of the approximation, etc) of Shen, Wirsching, and Cashman's method which suggested the approximate design curve for nonlinear models using tolerance interval constructed by Owen's method, an algorithm to find design curves under the fatigue model using a parametric bootstrap method, is proposed and illustrated with multiple fatigue data sets.

An Experimental Study of the Fatigue Specimen for the Typical Structural Details of the Steel Bridge (강교량의 표준적 구조상세에 대한 실험적 연구)

  • Chung, Yeong Wha;Jo, Jae Byung;Bae, Doo Byong;Jung, Kyoung Sup;Woo, Sang Ik
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.463-473
    • /
    • 2000
  • This paper presents the results of the experimental and analytical investigation for the fatigue strength of welded details frequently used in steel bridges, especially for the details with relatively lower fatigue strength. The welded details included four kinds of welded details corresponding to the categories C, D, E and E' which represent the flange attachment details, web attachment details, transverse stiffeners and cover-plate details. Tensile fatigue tests were performed. The test results were compared with other available test results and the fatigue criteria of AASHTO, JSSC and Eurocode specifications. Generally, our test results were well agreed with other test results and satisfied with above-mentioned fatigue design provisions. However, it was found that transversely loaded weld-details showed lower fatigue strength than longitudinally loaded weld-details in transverse stiffener detail, and the test results of those details were not satisfied with AASHTO fatigue provisions. Examining the effect of length of gusset plate attachment details, welded details with longer attachment showed relatively lower fatigue strength, especially for the out-of-plane gusset plate details. It is recommended to perform additional fatigue tests with various loading and detail parameters and to establish the more detailed fatigue categories such as Eurocode or JSSC

  • PDF

Numerical Analysis Study for Optimal Design Method on Intersection between Longitudinal and Transversal Rib in Orthotropic Steel Deck Bridge (강바닥판교의 종리브-횡리브 교차연결 상세변화에 따른 최적설계방안의 수치해석 연구)

  • 배두병;공병승
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.333-340
    • /
    • 2004
  • The use of the othotropic steel deck is steadily increased due to the advance of the technology in the steel bridges which recently have been longer. But the othotropic steel deck bridge is the structure that is very fragile to the fatigue, especially, the fatigue crack at the cross of the longitudinal rib and transversal rib is one of the biggest problems that othotropic steel deck bridges have. The causes of these fatigue cracks come from the secondary stress on out-plane behavior of transversal rib. In this study, we conducted the experiment to find the optimal details to improve fatigue strength on intersection between longitudinal rib and transversal rib in the othotropic steel deck bridge through numerical analysis using the experiment of the fatigue in the 3-dimensional real structure and program LUSAS. As a result of study, it is showed that the details of the korean standard section attached with a curved bulkhead plate is the most profitable. And, it is indicated that the stress which is generated when the reform improved section by parametic study can be reduced by about 50% at most or more. Along with the reduced stress and the longer interval between transversal ribs(G=400), the decreased steel amount by 4% and the shortened welding length by 34% make it possible to produce the othotropic steel deck bridge which is strong against fatigue.