DOI QR코드

DOI QR Code

Development of ViscoElastoPlastic Continuum Damage (VEPCD) Model for Response Prediction of HMAs under Tensile Loading

인장하중을 받는 아스팔트 혼합물의 점탄소성 모형의 개발

  • ;
  • ;
  • 서영국 (한국도로공사 도로교통연구원) ;
  • 이광호 (한국도로공사 도로교통연구원 연구개발실)
  • Received : 2007.11.13
  • Accepted : 2007.12.14
  • Published : 2008.01.31

Abstract

The objective of this research was to develop a VEPCD (ViscoElastoPlastic Continuum Damage) Model which is used to predict the behavior of asphalt concrete under various loading and temperature conditions. This paper presents the VEPCD model formulated in a tension mode and its validation using four hot mix asphalt (HMA) mixtures: dense-graded HMA, SBS, CR-TB, and Terpolymer. Modelling approaches consist of two components: the ViscoElastic Continuum Damage (VECD) mechanics and the ViscoPlastic (VP) theory. The VECD model was to describe the time-dependent behavior of HMA with growing damage. The irrecoverable (whether time-dependent or independent) strain has been described by the VP model. Based on the strain decomposition principle, these two models are integrated to form the VEPCD model. For validating the VEPCD model, two types of laboratory tests were performed: 1) a constant crosshead strain rate tension test, 2) a fatigue test with randomly selected load levels and frequencies.

아스팔트 혼합물의 거동을 정확하게 예측하기 위하여 점탄소성 연속체 손상모형(이하 점탄소성 모형)을 개발하였다. 본 논문에서는 인장조건에서 점탄소성 모형의 개발과 4가지 혼합물(일반 밀입도, SBS, CR-TB, Terpolymer)을 이용한 모형의 검증과정을 다루고 있다. 모형 개발을 위해서 실내시험으로 측정한 아스팔트 혼합물의 전체 응답을 점탄성과 점소성 성분으로 구분하여 분석하였다. 점탄성 연속체 손상모형으로는 미세균열이 지배적인 상태에서 아스팔트 혼합물의 시간 의존적 거동을 해석하고, 고온 혹은 저속 하중 조건에서 발생한 영구변형(시간 종속과 비종속 성분을 모두 포함)은 점소성 모형으로 해석하였다. 변형률 분해 원리에 근거하여 각각의 모형을 통합하여 점탄소성 연속체 손상모형(VEPCD)을 개발하였다. 모형의 변수 결정을 위해서 직접인장시험을 수행하고 각각의 혼합물에 대한 선형 점탄성은 동탄성계수와 시간-온도 전이계수 그리고 위상각의 주곡선으로 정의하였다. 개발된 점탄소성 모형의 예측 성능을 평가하기 위하여 두 종류의 실내시험 실시하고 그 결과를 분석하였다 : 1) 단일 변형률 인장 시험, 2) 임의 하중조건을 모사한 피로 시험.

Keywords

References

  1. Chehab, G., Kim, Y.R., Schapery, R.A., Witczack, M., and Bonaquist, R. (2002) Time-temperature superposition principle for asphalt concrete mixtures with growing damage in tension state. AsphaltPavingTechnology, AAPT, Vol. 71, pp. 559-593
  2. Chehab, G. (2002) Characterization of Asphalt Concrete in Tension Using a Viscoelastoplastic Model. Ph.D. Dissertation, North Carolina State University, Raleigh, NC
  3. Chehab, G., Kim, Y.R., Schapery, R.A., Witczack, M., Bonaquist, R. (2003) Characterization of asphalt concrete in uniaxial tension using a viscoelastoplastic model. Asphalt Paving Technology, AAPT, Vol. 72, pp. 315-355
  4. Daniel, J.S. (2001) Development of a Simplified Fatigue Test and Analysis Procedure Using a Viscoelastic, Continuum Damage Model and its Implementation to WesTrack Mixtures. Ph.D. Dissertation, North Carolina State University, Raleigh, NC
  5. Daniel, J.S. and Kim, Y.R. (2002) Development of a simplified fatigue test and analysis procedure using a viscoelastic continuum damage model.AsphaltPavingTechnology, AAPT, Vol. 71, pp. 619-650
  6. Deacon, J.A., Tayebali, A.A., Rowe, G.M., and Monismith, C.L. (1995) Validation of SHRP A-003A Flexural Beam Fatigue Test. In Engineering Properties of Asphalt Mixtures and the Relationship to Their Performance, ASTM STP 1265. pp. 21- 36
  7. Ferry, J.D. (1961) ViscoelasticPropertiesofPolymers. John Wiley and Sons, Inc. New York
  8. Kim, Y.R. and Little, D.N. (1990) One-dimensional constitutive modeling of asphalt concrete. ASCE Journal of Engineering-Mechanics, Vol. 116, No. 4, pp. 751-772 https://doi.org/10.1061/(ASCE)0733-9399(1990)116:4(751)
  9. Kim, Y.R. and Chehab, G. (2004) Development of a Viscoelastoplastic Continuum Damage Model for Asphalt-Aggregate Mixtures: Final Report As Part of Tasks F and G in the NCHRP 9- 19 Project, National Cooperative Highway Research Program, National Research Council, Washington, D.C
  10. Lee, H.J. and Kim, Y.R. (1998) A uniaxial viscoelastic constitutive model for asphalt concrete under cyclic loading. ASCE Journal of EngineeringMechanics, Vol. 124, No. 1, pp. 32-40 https://doi.org/10.1061/(ASCE)0733-9399(1998)124:1(32)
  11. Park, S.W., Kim, Y.R., and Schapery, R.A. (1996) A viscoelastic continuum damage model and its application to uniaxial behavior of asphalt concrete. Mechanics of Materials, Vol. 24, No. 4, pp. 241-255 https://doi.org/10.1016/S0167-6636(96)00042-7
  12. Rao Tangella, S.C., Craus, J., Deacon, J.A. and Monismith, C.L. (1990) Summary Report on Fatigue Response of Asphalt Mixtures. Report TM-UCB-A-003A-89-3. Strategic Highway Research Program. National Research Council, Washington, D.C
  13. Schapery, R.A. (1981) On Viscoelastic deformation and failure behavior of composite materials with distributed flaws. Advancesin Aerospace Structuresand Materials, AD-01, ASME, New York, pp. 5-20
  14. Schapery, R.A. (1984) Correspondence principles and a generalized j-integral for large deformation and fracture analysis of viscoelastic media. Int. Journal of Fracture, Vol. 25, pp. 195-223 https://doi.org/10.1007/BF01140837
  15. Schapery, R.A. (1990) A theory of mechanical behavior of elastic media with growing damage and other changes in structure. J. Mech. Phys. Solids, Vol. 38, pp. 215-253 https://doi.org/10.1016/0022-5096(90)90035-3
  16. Schapery, R.A. (1990) Simplification in the viscoelastic behavior of composites with growing damage. Proceedings of the IUTAM Symposium in Inelastic Deformation of Composite Materials, G.J. Dvorak (ed.), Springer-Verlag, Berlin, Vol. 1, pp. 193-214
  17. Schapery, R.A. (1999) Nonlinear viscoelastic and viscoplastic constitutive equations with growing damage. Int. Journal of Fracture, Vol. 97, pp. 33-66 https://doi.org/10.1023/A:1018695329398
  18. Simo, J.C. and Hughes, T.J.R. (1998) ComputationalInelasticity. Springer-Verlag, New York
  19. Uzan, J. (1996) Asphalt concrete characterization for pavement performance prediction. Asphalt Paving Technology, AAPT, Vol, 65, pp. 573-607